
Simulation + Hypothesis Testing for Solving the

Probabilistic Model Checking Problem

Axel Legay and Mahesh Viswanathan

September 11, 2009

Axel Legay and Mahesh Viswanathan Simulation + Hypothesis Testing for Solving the Probabilistic M1/64

1

Contents

1 Outline 1

2 Introduction 1

3 The Algebraic Approach 3

4 Statistical Model Checking 5

5 Experiments 12

6 Bayesian Model Checking 23

7 What’s next? 23

2 Introduction

Objective

Our Objectives
We will have four objectives :

1. Getting more knowledge about how to verify stochastic systems;

2. Studying how statistical techniques can be applied in this area;

3. New applications (models, properties);

4. Going further than algebraic approaches (PRISM, LIQOR, ...).

Stochastic Systems

Stochastic Systems (1)

Definition 1. A stochastic system is a process that evolves over time, and
whose evolution can be predicted in terms of probability (pure) and nonde-
terministic choices (nonpure).

Where can they be found?

• Embedded systems;

• Economy;

• Networking;

• Systems Biology;

• ...

Stochastic Systems (2) : Models

Those we consider

• Any model of pure stochastic systems;

• Example : Markov Chains.

Those we won’t consider

• Any model which mixes nondeterministic and probabilistic choices;

• Example : Markov Decision Processes (MDPs).

Verifying Stochastic Systems

Verification Process

Question

Does S |= P≥θ(φ) ?

where :

• S is a Stochastic system;

• Executions of S are sequences of states (random variables);

• φ is some execution-based property (specification language);

• P (X) means : “the probability for X to happen”;

• θ is a probability threshold.

2

3 The Algebraic Approach

Outline

Contents

Description of the approach

Main idea

Overview

• Assume the existence of a probability space;

• Compute the probability p for S to satisfy φ;

• Compare p with θ.

Difficulty

Algorithms to compute p.

Advantages and Disadvantages

Advantages

• High accuracy in result;

• Exists for nonpure models such as MDPs;

• Well-established tools : PRISM, LIQUOR, PMAUD, . . .

• ...

Disadvantages
There are at least 5 disadvantages

1. Memory intensive;

2. Limited to certain classes of systems and properties (finite-state, ..);

3. No unique solution;

3

4. Complex algorithms :

One Difficulty: How to find efficient data structures;

5. Difficult to parallelize.

4 Statistical Model Checking

Outline

Contents

Description of the approach

Learning from a Simple Problem

A (VERY) simple problem

• Consider a machine that flips a (possibly biaised) coin;

• Is the probability p of having a head greater or equal to some θ?

A solution

• Do several flips and deduce the answer from them;

• If the number of flips is infinite, our answer will be correct up to some
type error.

This is the statistical model checking approach!

Hypothesis Testing

Test P (having a head)≥θ against P (having a head) < θ

With (Type error):

1. α : the probability to accept H1 while H0 is true;

2. β : the probability to accept H0 while H1 is true.

4

Performance of Test

1-α

β

False positives

False negativesProba. of
accepting
H : p ≥ θ

Actual probability p

θ

[.5cm]
Needs an infinite number of samples to get ideal performances !

Performance of Test
�������������������

1-α

β

False positives

False negativesProba. of
accepting
H : p ≥ θ

Actual probability p

θθ − δ θ + δ

[.5cm]
If p ∈ [θ − δ, θ + δ], we say we are indifferent to know if p ≥ θ

Summary

We want to test :

5

H0 : p≥ p0 against H1 : p < p1, where p0 = θ + δ and p1 = θ − δ.

With:

• Type erros α and β, and

• Indifference region 2δ.

Bernouili Variables for experiments

Bernouili variable Xi of parameter p

• Takes two values : Xi = 0 or Xi = 1;

• P [Xi = 1] = p and P [Xi = 0] = 1− p;

• Realization is denoted xi.

Experiments

• We assume independent trials;

• We can generate as much trials as we want;

• p is the probability to get a head ;

• Associate a bernouili variable Xi to each trial;

• Xi = 1 iff the trial is a tail.

Two Algorithms

Algorithm 1 : Single Sampling plan

• Pre-compute a number n of experiments;

• n depends on δ,α, and β.

Algorithm 2
Basically a on-the-fly version of the Single Sampling Plan (in fact, this is
much more :-)!)

6

Single Sampling plan

Single Sampling plan : Principles

• Choose n and c with c ≤ n;

• n observations x1, . . . , xn for n samplings X1, . . . ,Xn;

• Y =
∑n
i=1 xi;

• Accept H0 if Y≥ c and H1 otherwise;

Difficulty : Find n and c such that α and β are satisfied

Single Sampling plan : α and β

Definition 2. P [Y ≤ c] = F (c;n; p) =
∑i=c
i=0C

n
i p
i(1− p)n−i.

Definition 3. F (c;n; θ) : probability to accept H1.

Definition 4. • F (c;n; θ + δ) ≤ α;

• 1 - F (c, n; θ − δ) ≤ β.

Single Sampling plan : Disadvantages

• Difficult to find c and n : No unique solution;

• Difficult to minimize n;

Approximation algorithms exist (Haakan Youness).

Better for black-box systems (next part of the tutorial)..

Optimality (Hasting)

Thresholds Values

θ − δ = 0 θ + δ = 1 n = 1 c = 0

θ − δ = 0 θ + δ < 1 n = logα
log 1−θ−δ

c = 0

θ − δ > 0 θ + δ = 1 n = log β
log θ−δ

c = n− 1

7

Sequential Hypothesis Testing

Sequential Hypothesis Testing

• Check hypothesis after each sample and stop as soon as possible

• We can find an acceptance line and a rejection line given α, β, θ, δ.[.6cm]

Continue until a
line is crossed

Continue Sampling

Generate samples
using simulation

Number of Samples

Number of
positive
samples

Accept

Reject

Wald’s Testing
Compute

W =
m∏

i=1

Pr(Xi = xi | p = θ − δ)

Pr(Xi = xi | p = θ + δ)
=

(θ − δ)dm(1− θ + δ)m−dm

(θ + δ)dm(1− θ − δ)m−dm
, (1)

where dm =
∑m
i=1 xi. Stop when :

• W ≥ (1− β)/α : H1 is accepted;

• W ≤ β/(1 − α) : H0 is accepted.

More Mathematics

• In theory : the test does not guarantee α and β!

• New parameters α′ and β′ such that

– α′≤ α
1−β

and β′≤ β
1−α

8

– α′ + β′ ≤ α+ β;

• In practice : one observes that α and β are almost often guarantee,
and it may even be better!

Example 5. Let p0 = 0.5, p1 = 0.3, α = 0.2, β = 0.1 :

• In theory : α′≤0.2
0.9

= 0.222... and β′≤0.1
0.8

= 0.125;

• Computer simulation : α′ = 0.175 and β′ = 0.082.

Performances (1)

• Single sampling plan can be better than SPRT !

• SPRT is, in practice, more efficient;

• Expected sample size Ep (Wald’s formula) :

– SPRT minimizes Ep at θ + δ and θ − δ;

– Ep increases from 0 to θ − δ;

– Ep decreases from θ + δ to 1;

– Between θ − δ and θ + δ : increase and then decrease.

Performances (2) : SPRT

Indifference region Number of
2δ executions

0.1 55
0.05 106
0.02 228
0.01 627
0.005 1056

Number of trajectories against 2δ

(α = β = 0.02)

• m increases linearly if δ decreases.

9

Performances (3) : SPRT

Test strength Number of
α(= β) executions

1e−2 335
1e−4 502
1e−6 857
1e−8 1301
1e−10 1467

Number of trajectories against α (β = α

and 2δ = 0.02)

• m increases logarithmically if α and/or β decrease.

From Flipping a coin to Model Checking

Fact
Flipping a coin is nothing more than testing whether a finite execution
satisfies a property.

Results
Consequence : Wald’s testing directly applies to model check properties of
white-box stochastic systems.

Properties

• Natural : those that can be checked on finite execution;

• Going further : Some properties on infinite executions:

Next part of the tutorial.

Why are nonpure systems forbidden?

• We sample a unique distribution;

• Sampling several distributions would require to distinguish between
them;

• This cannot be done on the sole basis of running the system.

10

Advantages

Advantages

• Easy to parallelize (independent sampling, unbiased distributed sam-
pling);

• Independent of system’s size;

• Independent of system’s probability distribution;

• Easy to trade accuracy for speed;

• Uniform approach;

• Easy to implement :

– In most cases, one only need to implement a “trace checker” that
tests whether an execution satisfies a given property;

– No need for complex data structures.

A Note on Parallelization

• Observations are generated by different machines;

• Observations must be independent; :

– Using different seeds is not sufficient : it only determines initial
numbers, not the way the sequence is generated;

– Solution :

encode process ID directly is the generator.

• Slave - master : experiments are collected in ring-order.

5 Experiments

2 types of experiments

• ∆−Σ Modulator (conversion : analogue to digital);

• Systems biology (briefly).

11

Modulator

Model Checking mixed-signal circuits

• Mature for digital designs but still new for analog and mixed design

• Difficult due to continuous and hybrid state variables

Probabilistic Model Checking

• Stochastic systems and/or stochastic uncertainties

• Exact solution is a difficult problem in general

Statistical Approach

• Use of numerical simulation

• Approximate solution with bounds on errors

Systems and Logics with Signals

Outline

Contents

Logics: LTL formulas
Let B be a set of predicates. The following defines an LTL formula:

φ ::= T |F |b ∈ B |¬φ |φ1 ∨ φ2 | © φ |φ1Uφ∈.

Let ω = s1s2...sk, |ω| = k, ω
i = sisi+1...sk, ω(i) = si and L be a mapping from

S to 2B. We have:

- ω |= T, ω �|= F and ω |= ¬φ iff ω �|= φ

- ω |= b with b ∈ B iff b ∈ L(ω(0))

- ω |= φ1 ∨ φ2 iff ω |= φ1 or ω |= φ2

- ω |=©φ iff |ω| > 1 and ω1 |= φ

- ω |= φ1Uφ∈ iff there exists 0 ≤ i ≤ |ω| − 1 such that ωi |= φ2, and for each
0 ≤ j < i, ωj |= φ1

Additionally, we use the eventually operator ♦ defined as ♦φ = FUφ. Note that

we only consider finite executions.

12

Logics: Execution Predicates

Definition 6 (Execution Predicate). Let Σ(S) be the set of all the executions of
an SSDES S. An execution predicate p for S is a mapping p : σ ∈ Σ(S) �→ p(σ) ∈
{T,F}.

Example 7. Execution predicate p that decides whether the mean value of the
analog signal associated with σ is ≥ 0:

p(σ) = T iff
1

N

N−1∑

k=0

πa(σ(k)) ≥ 0.

More complex functionals such as the Fourier transform can be used[.4cm]

Claim. Let S be an SSDES and φ be a Boolean combination of LTL formulas
and execution predicates. One can always associate a probability with the set of
executions of S that satisfy φ.

A Class of Mixed-Signal Circuits: ∆− Σ Modulators

Outline

Contents

∆− Σ Modulators for Dummies
Analog to Digital converters (ADC)

• Converts analog signal into digital signals

• Used in many electrical devices interfacing with a physical environ-
ment[.5cm]

∆− Σ modulators

• Widely used family of ADCs

• Efficient processing of the quantization error, i.e., the difference be-
tween the analog input and the digital output

A Simple Discrete-Time ∆− Σ Modulator
Principle Control of quantization error using a feedback loop

13

�

−

Analog
Input

Digital
Output

u(k)

δ(k)
=u(k)−v(k)

x(k)
=x(k−1)+δ(k)

v(k)
=sign(x(k))

v(k)

v(k)
Integrator Quantizer

- The quantization error is the difference between the input and the
output

- The integrator stores the summation of δs in a state variable x

- The quantizer produces the output based on the sign of x

Higher Order ∆− Σ Modulators

• More complex designs use more than one integrator[.3cm]

• The order of a ∆−Σ modulator is the number of integrators used[.3cm]

• Beginning from order three, a stability issue appears[.3cm]

• i.e. the integrators states can reach a saturation threshold compromis-
ing the analog to digital conversion

Experiments with a Third Order ∆− Σ Modulator

Outline

Contents

Questions and Existing Results

First Question
When does saturation occur?

Second Question

14

Does saturation always imply a bad conversion?

Existing Results

• Hybrid system model;

• Some answer to the first question for a limited horizon;

• Nothing for the second question (Fourier transform!).

A third order ∆− Σ modulator, Simulink model

- We get a stochastic system by randomly choosing the inputs u(k)

- State sk is the tuple (u(k), x1(k), x2(k), x3(k), v(k))

- The next state sk+1 is determined by the random choice of u(k + 1) and
computed by the Simulink engine

- For all k, u(k) is chosen uniformly in [−umax, umax][.3cm]

⇒ Statistical analysis for all input signals of amplitude bounded by umax

Saturation Analysis

Probability of saturation occurrence for different values of umax ?

• Let Satur be a boolean predicate

• For all state s = (u, x1, x2, x3, v), let L(s) = {Satur} iff |x3| ≥ 1

We can then evaluate the formula Pr≥θ(♦Satur).[.3cm] A tool :

• A routine checking σ |= ♦Satur

• The sequential ratio testing algorithm which decides whether S |=
Pr≥θ(φ) given θ, α, β and δ

• A simple bisection procedure which tries to maximize the value of θ
for which the answer is true

15

Experimental Results

umax Hypothesis Number
Accepted of executions

0.1 p ≤ 0 416
0.15 p ≥ 0.0938 4967
0.2 p ≥ 0.640625 17815
0.25 p ≥ 0.984375 416
0.3 p ≥ 1 688

Table of results for p = Pr(σ |= ♦Satur), with α = β = 1e−3 and δ = 1e−2

• Consistent with results formally obtained in [Dang Donze Maler 04] but on
a much larger horizon (24000 as compared to 31)

• The expected number of simulations grows logarithmically w.r.t. the inverse
of α and β and polynomially w.r.t. the inverse of δ

Frequency Domain

nu

nu

quantization error

F1

F2

[.5cm]

• Quantization pushes error towards high frequencies;

• Suggestion : Check for quality under small frequencies.

16

Execution Predicate in the Frequency Domain

• Let Fu(σ) and Fv(σ) be the Fourier Transforms (FTs) of the input
signal associated with σ[.2cm]

• Let dν0f (ξ̂1, ξ̂2) be a measure of the distance between two FTs ξ̂1 and

ξ̂1 for frequencies smaller than ν0[.2cm]

• Then we can derive an execution predicate pf such that

pf (σ) = T iff dν0f (Fu(σ), Fv(σ)) ≤ ε,

For ν0 = 100Hz and ε ≤ .1 the predicate discriminates between “correct”
and “failed” conversions

Frequency Domain Predicate, Experimental Results

umax Hypothesis Number
Accepted of Executions

0.8 p ≥ 1 688
0.9 p ≥ 0.984375 612
1.0 p ≥ 0.984375 1248
1.1 p ≥ 0.875 6388
1.2 p ≥ 0.578125 15507

Table of results for p = Pr(pf), with α = β = 1e−3 and δ = 1e−2

Experiments Interpretation
The previous results show that

• For umax ≥ 0.3 the system satisfies ♦Satur with probability 1

• For umax ≤ 0.8 the system satisfies pf with probability 1 [.5cm]

Thus we statistically established that for 0.3 ≤ umax ≤ 0.8, the formula
♦Satur ∧ pf is satisfied with probability 1, meaning that saturation can occur
without a dramatic decrease in the conversion quality[.8cm]

This extends the results in [Gupta Krogh Rutenbar 04] and [Dang Donze Maler 04]
where it was conservatively assumed that the absence of saturation was necessary
for a proper behavior

17

Conclusion and Perspectives

Conclusion on ∆− Σ Modulator
Summary

• A framework for the statistical probabilistic Model Checking of mixed-signal
circuits

• The simulation-based approach makes it easier to deal with functionals on
executions such as the Fourier transform

• Application to a non-trivial case study for which we improved previous results

Future work

• Extension to unbounded execution and dense time using appropriate moni-
toring techniques

• Logic mixing temporal properties and partial execution predicates

• More precise definitions and specifications for frequency domain properties
based on the need of analog designers

System’s Biology

Systems Biology

• In presence of a few species, reactions are defined in terms of stochastic
processes;

• In such context, one wants to exercise the master equation that governs
system’s evolution.

Definition 8. The master equation : phenomenological set of first-
order differential equations describing the time evolution of the prob-
ability of a system to occupy each one of a discrete set of states.

Situation

• We want to Solve stochastic equations, but

• Many stochastic equations are numerically intractable!

18

BionetGen and Gillespie

• BionetGen Toolset:

Very simple language to model proteins and proteins-proteins
interactions :

Uses rewriting rules like the k-calculus

• Gillespie algorithm simulates rule applications (Continuous-timed Markov
Chains);

• Systems can be big : more than 6 hours for a simulation !

⇒ distributed implementation.

BionetGen Language (1)

The language allows to describe

• Molecules and functional;

• States of functional;

• Binding between functional and molecules;

• Chemical reactions;

•

Available at

http://bionetgen.org/index.php/Main_Page

BionetGen Language (2)

Example 9. Molecule

R(l,d,Y~P)

Example 10. Chemical reaction

L(r) + R(l,d) <-> L(r!1).R(l!1,d) kp1, km1

19

Biolab

• Combine BionetGen with SPRT;

• A logic for biologist;

• Formal validation of observations (T-Cell model, ...).

Architecture of BIOLAB

BioNetgen

Model

BioNetgen

Trace

 Simulation

Verifier

Trace

Verified / Failed

Property

by Trace

Temporal Logic

Property

Sequential

Hypothesis

Testing

Algorithm

[.5cm]

The T-Cell model

• Detect antigen and should react properly;

20

• Should not react to non pathological proteins;

• Property : the system can alternate between reactive an nonreactive
states.

6 Bayesian Model Checking

Bayesian Testing

1. Prior probability (informative Vs. non informative) on H0 and H1;

2. Prior information is used to decrease the number of experiments;

3. Bayesian Testing is more driven towards compound hypothesis than
statistical hypothesis testing!

Future Work : Bayesian risk and nested operators.

Non Informative Prior

θ Bayes′ Factor T est SPRT (δ = 0.01) SPRT (δ = 0.001)
H1 H0 H1 H0 H1 H0

0.95 2 275 349
0.9 8 610 608
0.8 35∗ - - - -
0.7 81∗ - - - -
0.6 591∗ - - - -
0.5 272 - - - -
0.4 156 - - - -
0.3 16 - - - -
0.2 5 909 929
0.1 9 446 468
0.05 2 201 189

7 What’s next?

Next part of the tutorial :

21

• Model Checking PCTL∗ using hypothesis testing;

• Neested probability operators;

• Black-box systems.

22

1 Overview

Session I Overview

• Sampling + Hypothesis testing can be used to infer parameters of a Bernoulli distribution

• Application: Verification of properties P≥θ(ψ) where ψ is such that

– for every execution σ, there is a finite prefix u such that σ |= ψ iff u |= ψ, and

– for any finite prefix u, u |= ψ can be easy checked

Session II Overview

• Extend ideas of Session I to develop algorithms to verify properties in a full logic like PCTL.
Main challenges include verifying properties P≥θ(ψ), where

– Determining the satisfaction of ψ on an execution requires further statistical tests

– Satisfaction of ψ on an execution not determined by a finite prefix, e.g., p U q

• Use ideas of statistical model checking to verify “black-box” or “model-less” systems

Session II Outline

• Overview of Measure Spaces, Markov Chains, and PCTL

• Model checking PCTL

• Model checking black-box systems

Part I

Preliminaries

2 Measure Spaces

σ-Field

Definition 1. A σ-field over a set X is a collection, Σ, of subsets X such that

• X ∈ Σ

• If A ∈ Σ then X \A ∈ Σ, and

• If {Ai}i∈I is a countable collection of sets from Σ then
⋃

i∈I Ai ∈ Σ

Example 2. Given a set X, the collections Σ1 = {∅, X} and Σ2 = 2X are examples of σ-fields.

Smallest σ-Field

• Intersection of arbitrary σ-fields is again a σ-field

• Thus, given any collection C of subsets of X, there is a unique smallest σ-field that contains
C

• This is said to be the σ-field generated by C

Probability Measures

Definition 3. A probability measure, µ, over (X,Σ) is µ : Σ → R≥0 such that

• µ(∅) = 0

• For a countable collection of pairwise disjoint sets {Ai}i∈I , µ(
⋃

i∈I Ai) =
∑

i∈I µ(Ai)

• µ(X) = 1

3 Markov Chains

Markov Chain

Definition 4. A Markov Chain over a set of propositions AP is a M = (Q, qs, δ, L), where

• Q is a set of (not necessarily finite) states,

• qs ∈ Q is the initial state,

• L : Q→ 2AP is a labelling function, and

• δ : Q×Q→ [0, 1] is a transition function with the property that for every q,
∑

q′∈Q δ(q, q
′) = 1

Measurable Sets

• A run ρ is an element of Qω. ρ starts from q if the first state in ρ is q; the collection of all
such runs is denoted by path(q).

• For u ∈ Q∗, define Cu = {u · ρ | ρ ∈ Qω}
• The measurable sets of runs are those belonging to the smallest σ-field generated by {Cu |u ∈
Q∗}

Probability Measure Defined by Markov Chains

Definition 5. The probability measure on runs defined by M = (Q, qs, δ, L) is the unique measure,
µ, satisfying the following. For u = q0, q1, . . . qn

µ(Cu) =
n−1∏

i=0

δ(qi, qi+1)

Sampling executions of a Markov Chain generates runs according to this measure.

2

4 PCTL

PCTL Syntax

Definition 6. The formulas of PCTL over a set of atomic propositions AP are given by the
following grammar

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P��θ(ψ)

where a ∈ AP , ��∈ {<,≤, >,≥}, θ ∈ R, and ψ is a path formula given by the following grammar

ψ ::= Xϕ | ϕUϕ

PCTL Semantics State Formulas

Definition 7. Satisfaction of a state formula ϕ at a state q is inductively defined as follows

• q |= true

• q |= a iff a ∈ L(q)

• q |= ¬ϕ iff q does not satisfy ϕ

• q |= ϕ1 ∧ ϕ2 iff q |= ϕ1 and q |= ϕ2

• q |= P��θ(ψ) iff µ({π ∈ paths(q) | π |= ψ}) �� θ 1

PCTL Semantics Path Formulas

Definition 8. Satisfaction of a path formula ψ on a path π = q0q1 · · · is inductively defined as
follows

• π |= Xϕ iff q1 |= ϕ

• π |= ϕ1Uϕ2 iff there is an i such that qi |= ϕ2 and for all j < i, qj |= ϕ1

We say M |= ϕ iff qs |= ϕ

PCTL Syntax Abbreviations

We will use the following abbreviations

• ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)

• ϕ1U
≤nϕ2 says that “ϕ2 holds within n steps and ϕ1 holds until then”

1For any state q and path formula ψ, {π ∈ paths(q) | π |= ψ} is measurable.

3

Part II

Model Checking PCTL

5 Basic Operators

5.1 Overview

Schematic Picture

System

Simulator
Model
Checker

Sample
Run

Get
run

from q

δ, α, β, ϕ

Yes

No

The system model could be any probabilistic model with a well understood probability space over
executions that can be sampled, and a logic over that probability space.

Properties of the Algorithm

Let Aδ
M(q, ϕ, α, β) be the result of the algorithm when checking if ϕ holds in state q in model M,

with error parameters α and β, and indifference region δ. If M is such that

C For every subformula of ϕ of the form P≥p(ψ) and every state q′, the measure of paths
satisfying ψ is not in [p−δ−α

1−α , p+δ
1−β]

then
Prob[Aδ

M(q, ϕ, α, β) = true | q �|= ϕ] ≤ α and
Prob[Aδ

M(q, ϕ, α, β) = false | q |= ϕ] ≤ β

Algorithm Structure

Aδ
M(q, ϕ, α, β) {

switch (ϕ) {
case true: return true
case a ∈ AP: return (a ∈ L(q))
case ¬ϕ′: return verifyNot(q, ϕ, α, β)
case ϕ1 ∧ ϕ2: return verifyAnd(q, ϕ, α, β)
case P≥p(ψ): return verifyProb(q, ϕ, α, β)

}
}

We cannot distinguish between strict and non-strict inequalities in P��p(ψ). Also, P<p(ψ) is logically
equivalent to ¬P≥p(¬ψ).

4

5.2 Algorithm for Boolean Operators

Negation

verifyNot(q,¬ϕ′, α, β) {
return ¬Aδ

M(q, ϕ′, β, α)
}

Observe that (inductively)

β > Prob[Aδ
M(q, ϕ′, β, α) = true | q �|= ϕ′]

= Prob[Aδ
M(q,¬ϕ′, α, β) = false | q |= ¬ϕ′]

α > Prob[Aδ
M(q, ϕ′, β, α) = false | q |= ϕ′]

= Prob[Aδ
M(q,¬ϕ′, α, β) = true | q �|= ¬ϕ′]

Conjunction

verifyAnd(q, ϕ1 ∧ ϕ2, α, β) {
return Aδ

M(q, ϕ1, α, β/2) ∧ Aδ
M(q, ϕ2, α, β/2)

}

Observe that (inductively)

Prob[Aδ
M(q, ϕ1 ∧ ϕ2, α, β) = false | q |= ϕ1 ∧ ϕ2]

= Prob[Aδ
M(q, ϕ1, α, β/2) = false ∨ Aδ

M(q, ϕ2, α, β/2) = false | q |= ϕ1 ∧ ϕ2]

≤ Prob[Aδ
M(q, ϕ1, α, β/2) = false | q |= ϕ1 ∧ ϕ2] +

Prob[Aδ
M(q, ϕ2, α, β/2) = false | q |= ϕ1 ∧ ϕ2]

= Prob[Aδ
M(q, ϕ1, α, β/2) = false | q |= ϕ1] +

Prob[Aδ
M(q, ϕ2, α, β/2) = false | q |= ϕ2]

= β/2 + β/2 = β

Conjunction (contd)

Observe that (inductively)

Prob[Aδ
M(q, ϕ1 ∧ ϕ2, α, β) = true | q �|= ϕ1 ∧ ϕ2]

≤ max(Prob[Aδ
M(q, ϕ1 ∧ ϕ2, α, β) = true | q �|= ϕ1],

Prob[Aδ
M(q, ϕ1 ∧ ϕ2, α, β) = true | q �|= ϕ2])

≤ max(Prob[Aδ
M(q, ϕ1, α, β) = true | q �|= ϕ1],

Prob[Aδ
M(q, ϕ2, α, β) = true | q �|= ϕ2])

= α

5

6 Probabilistic Operator

6.1 Simple Formulas

Simple Formulas

Definition 9. A simple formula is of the form P≥p(ψ), where

• ψ only uses the path operators X and U≤n, and

• ψ does not have any probabilistic operators

Checking Simple Formulas

To check if q satisfies a simple formula P≥p(ψ), use either the single sampling plan or sequential
hypothesis testing to statistically determine is the measure of paths satisfying ψ is ≥ p with
indifference region 2δ. Draw samples as follows

Simulate the system from q until you get a finite path that either provably satisfies ψ
or provably violates ψ

6.2 Bounded Path Formulas

Bounded Path Formulas

Definition 10. A bounded path formula is of the form P≥p(ψ), where

• ψ only uses path operators X and U≤n

ψ may have nested probabilistic operators.

Checking Bounded Path Formulas

Challenge
Consider a formula P≥p(XP≥p′(Xa)), and drawing a sample run ρ = q, q1, . . .

• We cannot determine if q1 |= P≥p′(Xa), and so we don’t know if ρ |= XP≥p′(Xa)

• We can statistically determine if q1 |= P≥p′(Xa). How do we account for the error in the
estimation?

Proportion of Fair Coins

Problem
Given a bag of coins, are most (75%) of the coins fair? If the coins can be physically examined to
fair or not, then we have the following situation We can test the random variable X statistically to
determine if Prob[X = fair] ≥ 0.75.

Proportion of Fair Coins

If we cannot physically examine the coins to determine if they will be fair, we still want to test
random variable X below. But we observe the following random experiment Y

6

Bag Sample fair/unfair

X

Bag Sample fair/unfair

X

Relating X and Y

Let X be Bernoulli with parameter px and Y be Bernoulli with parameter py. Suppose the test
has errors (α, β), we have

Prob[Y = fair |X �= fair] ≤ α
Prob[Y �= fair |X = fair] ≤ β

Relating X and Y

Let X be Bernoulli with parameter px, Y be Bernoulli with parameter py, and test have error
(α, β). Then,

py = Prob[Y = fair]
= Prob[Y = fair |X �= fair]Prob[X �= fair]

+Prob[Y = fair |X = fair]Prob[X = fair]
py ≤ α(1 − px) + 1.px

py ≥ (1 − β)px

as Prob[Y = fair |X = fair] ≥ 1 − β. This means if px <
p−δ−α
1−α then py < p − δ and if px >

p+δ
1−β

then py > p + δ. Thus, we sample from Y and test the sample against p with indifference region
2δ.

Algorithm for Bounded Path Formulas

verifyProb(q, P≥p(ψ), α, β) {
Do as in simple hypothesis testing of Bernoulli variable

except when drawing a sample do the following ...

Get sample run π from q
switch (ψ) {

case Xϕ′: return Aδ
M(π[1], ϕ′, β, α)

case ϕ1 U
≤n ϕ2: return verifyBUntil(q, ψ, α, β)

}
}

Bounded Until
To check if π satisfies ϕ1U

≤nϕ2, we check if there is an i ≤ n, such that π[i] |= ϕ2, and π[j] |= ϕ1,
for j < i. We do these tests statistically, giving us the following test.

verifyBUntil(q, ϕ1 U
≤n ϕ2, α, β) {

for i = 0 to n do

if Aδ
M(π[i], ϕ2, β/n, α) then return true

else if not Aδ
M(π[i], ϕ1, β/n, α) then return false

}

7

Bag Sample Test fair/unfair

Y

Justification for parameters is same as for conjunction.

6.3 Unbounded Until

Unbounded Until

When drawing samples for bounded path formulas we know when to stop simulating

• when checking Xϕ′, we simulate the system for one step

• when checking ϕ1 U
≤n ϕ2, we simulate for at most n steps

But for ψ = ϕ1 U ϕ2 we don’t know when to stop simulation; there maybe no finite prefix that
determines the unsatisfiability ψ on a run.

Stopping Probability

We will modify the simulation as follows: at every step, either stop simulation with probability
ps, or continue the simulation with probability 1 − ps. Formally, given M = (Q, qs, δ, L), take
M′ = (Q ∪ {q⊥}, qs, δ′, L′) where

• L′(q) = L(q) for q ∈ Q, and L′(q⊥) is such that q⊥ �|= ϕ2

• For every q, q′ ∈ Q, δ′(q, q⊥) = ps and δ′(q, q′) = (1 − ps)δ(q, q′), and δ′(q⊥, q⊥) = 1

Relating the two Markov Chains

Proposition 11. Let the measure of paths in M from q ∈ Q satisfying ϕ1 U ϕ2 be denoted by pM

and the measure in M′ be denoted by pM′
. If N is the number of states in M then

pM(1 − ps)N ≤ pM
′ ≤ pM

Proof. • The measure of paths from q satisfying ϕ1 U ϕ2 is obtained by solving a system of
equations, through (say) Gaussian elimination

• Suppose the measure of paths from q is the ith variable solved

• By induction on i, that pM(1 − ps)i ≤ pM′ ≤ pM

Checking Unbounded Until Formulas

• Sample finite paths from M′

• Using the relationship between the Markov Chains M and M′ setup the hypothesis testing
with appropriate indifference regions like the case of nested probabilistic operators

8

Discussion of Unbounded Until Checking

• The algorithm presented depends on the number of states N , and the stopping probability
need to make the conditions workout can be small

• [SVA 05] Another algorithm with possibly better sample performance is as follows

– Use a special algorithm to check if a state q satisfies P=0(ϕ1 U ϕ2), by drawing samples
from M′

– Draw samples from M by stopping either when state satisfying ϕ2 is encountered or
when a state satisfying P=0(ϕ1 U ϕ2) is encountered

An Alternate Statistical Approach

• The correctness guarantees of the statistical model checker only apply when the measure of
paths satisfying the path subformulas are bounded away from the threshold to which they
are compared.

• The basic test for a probabilistic operator tests the hypothesis H0 : p′ ≥ p + δ against the
hypothesis H1 : p′ ≤ p− δ

• An alternate approach [SVA04,You06] does two comparisons: (a) the hypothesis H1
0 : p′ ≥

p+ δ against H1
1 : p′ ≤ p, and (b) the hypothesis H2

0 : p′ ≤ p− δ against H2
1 : p′ ≥ p

– If H1
0 is accepted over H1

1 then we say P≥p(ψ) holds
– If H2

0 is accepted over H2
1 then we say P≥p(ψ) does not hold

– If neither of the above cases happen, the algorithm says “unknown”

• The basic probability test can be extended to all of PCTL

Beyond PCTL and Markov Chains

• The statistical model checking approach can be applied to any situation where the model’s
probability space, simulation algorithm, and specification logic are intrinsically tied, not just
Markov Chains and PCTL

• Similar ideas have been used to analyze “real-time” models like CTMC, SMC against CSL
specifications

• The approach has also been used to check properties based on FFTs (Session I)

Part III

Model Checking Black-Box Systems

7 Introduction

7.1 Motivation

Black-Box Systems

9

Generating samples from any state of the system as desired maybe unreasonable in certain situa-
tions.

• When monitoring/observing a remote system over the network

• When analyzing third-party code

7.2 Problem Setup

Black-Box Systems: Schematic Picture

System

Simulator
Model
Checker

Sample
Runs

ϕ

Yes, p-value

No, p-value

Don’t know

Limitations Imposed by Problem Setting

• Since the sample runs are drawn independent of the verification process, the algorithm cannot
guarantee the correctness of its result to be within given error bounds.

• Instead, the algorithm will compute a qualitative measure of the confidence in its answer
(p-value)

• The sample may not contain “statistical witness” for the satisfaction or violation of a property;
the algorithm answers “don’t know” in such cases

Comments about the Algorithm

• Runs will be assumed to be generated from a “Markovian” process; so suffix of run starting
from a state q are faithful samples drawn from path(q)

• Useful results can only be obtained if the sample contains sufficiently many runs from each
“relevant state”; thus, the model have finitely many “states” like a DTMC, CTMC

• Since the number of sample runs is finite, and each run is finite, unbounded until operators
are essentially bounded until operators

10

8 The Algorithm

8.1 Probabilistic Operators

Algorithm Structure

verifyAtState(q, ϕ) {
switch (ϕ) {

case true: return (true, 0)
case a ∈ AP: return ((a ∈ L(q)), 0)
case ¬ϕ′: return verifyNot(q, ϕ)
case ϕ1 ∧ ϕ2: return verifyAnd(q, ϕ)
case P≥p(ψ): return verifyProb(q, ϕ)

}
}

Algorithm returns a result (true, false, or unknown) and a p-value

Non-nested Probabilistic Operator: Observations

Suppose we want to check if q satisfies P≥p(ψ). The n sample runs from q fall into 3 categories

• Those that satisfy ψ; let there be n
 such runs

• Those that satisfy ¬ψ; let there be n⊥ such runs

• Those that satisfy neither ψ nor ¬ψ. This happens when short. Let there be n? such runs

Thus, the sum of all positive observations is at least n
, and at most n− n⊥.

Non-nested Probabilistic Operators: Algorithm

Let X be the random variable denoting drawing a path from q that satisfies ψ, and let p′ be its
parameter

• If n
 > np then we say q satisfies P≥p(ψ) and the confidence in the answer is bounded by
Prob[

∑
X ≥ n
 | p′ = p]

• If n − n⊥ < np then we q does not satisfy P≥p(ψ) and the confidence is bounded by
Prob[

∑
X ≤ n− n⊥ | p′ = p]

• Otherwise, we say “don’t know”

Nested Probabilistic Operators

• Once again the situation can be modelled as one where instead of observing a random variable
X with parameter px, the sample provides evidence for another random variable Y with
parameter py

• If α is the p-value associated with Y , we can bound py as px − αpx ≤ py ≤ px + (1 − px)α

• Using these bounds, we can bound the confidence as Prob[
∑
Y > n
 | py = p − αp] or

Prob[
∑
Y < n− n⊥ | py = p+ (1 − p)α]

11

Nested Probabilistic Operators: Algorithm

verifyProb(q, P≥p(ψ)) {
max = 0; min = 0; α = 0;
for each sample path π starting at q {

(y, α′) = verifyPath(π, ψ);
if y = don’t know then

max = max+1
else min = min+y; max = max+y;
α = max(α, α′)

}
if (min> p+ (1 − α)p) then

return (true,Prob[
∑
Y ≥ min | py = p+ (1 − α)p])

else if (max< p− αp) then

return (true,Prob[
∑
Y ≤ max | py = p− αp])

else return (don’t know, 0)
}

8.2 Boolean Operators

Negation

verifyNot(q,¬ϕ′) {
(y, α) = verifyState(q, ϕ′)
return (¬y, α)

}

Conjunction

• If q satisfies ϕ1 with p-value α1 and satisfies ϕ2 with p-value α2 then q satisfies ϕ1 ∧ ϕ2 with
p-value max(α1, α2)

• If q does not satisfy ϕ1 with confidence α2 (or ϕ2 with α2) then q does not satisfy ϕ1 ∧ ϕ2

with confidence α1 (α2)

• If q does not satisfy ϕ1 and ϕ2 with confidence α1 and α2, respectively, then q does not satisfy
ϕ1 ∧ ϕ2 with confidence min(α1, α2)

Extensions

• Ideas used to check PCTL properties can easily be extended to check properties in CSL

Conclusions

• Statistical hyposthesis testing can be used to verify systems in a model independent way,
against a variety of properties

• The techniques have been used in a few case studies (including those discussed in Session I)

• There have also been some examples analyzed to get a better sense of the samples needed,
and how the approach compares to more traditional numerical based approach

12

