Simulation + Hypothesis Testing for Solving the
Probabilistic Model Checking Problem

Axel Legay and Mahesh Viswanathan

September 11, 2009

Axel Legay and Mahesh Viswanathan Simulation + Hypothesis Testing for Solving the | 1/64

1

Contents

1 Outline 1
2 Introduction 1
3 The Algebraic Approach 3
4 Statistical Model Checking 5
5 Experiments 12
6 Bayesian Model Checking 23
7 What’s next? 23
2 Introduction

Objective

Our Objectives

We will have four objectives :

1. Getting more knowledge about how to verify stochastic systems;
2. Studying how statistical techniques can be applied in this area;
3. New applications (models, properties);

4. Going further than algebraic approaches (PRISM, LIQOR, ...).

Stochastic Systems

Stochastic Systems (1)

Definition 1. A stochastic system is a process that evolves over time, and
whose evolution can be predicted in terms of probability (pure) and nonde-
terministic choices (nonpure).

Where can they be found?

Embedded systems;
e Fconomy;

e Networking;

Systems Biology;

Stochastic Systems (2) : Models
Those we consider

e Any model of pure stochastic systems;

e Example : Markov Chains.

Those we won’t consider
e Any model which mixes nondeterministic and probabilistic choices;

e Example : Markov Decision Processes (MDPs).

Verifying Stochastic Systems

Verification Process

Question

Does S = Psg(¢) ?

where :

e S is a Stochastic system;
e Executions of S are sequences of states (random variables);

e ¢ is some execution-based property (specification language);

P(X) means : “the probability for X to happen”;

0 is a probability threshold.

3 The Algebraic Approach

Outline

Contents

Description of the approach

Main idea

Overview
e Assume the existence of a probability space;
e Compute the probability p for S to satisfy ¢;

e Compare p with 6.

Difficulty

Algorithms to compute p.

Advantages and Disadvantages
Advantages
e High accuracy in result;
e Exists for nonpure models such as MDPs;
e Well-established tools : PRISM, LIQUOR, PMAUD, ...

Disadvantages
There are at least 5 disadvantages

1. Memory intensive;
2. Limited to certain classes of systems and properties (finite-state, ..);

3. No unique solution;

4. Complex algorithms :
One Difficulty: How to find efficient data structures;

5. Difficult to parallelize.

4 Statistical Model Checking

Outline

Contents

Description of the approach
Learning from a Simple Problem
A (VERY) simple problem
e Consider a machine that flips a (possibly biaised) coin;

e Is the probability p of having a head greater or equal to some 67

A solution
e Do several flips and deduce the answer from them;

e If the number of flips is infinite, our answer will be correct up to some
type error.

This is the statistical model checking approach!

Hypothesis Testing

Test P(having a head)>6 against P(having a head) < 0

With (Type error):
1. « : the probability to accept Hy while Hy is true;

2. 3 : the probability to accept Hy while H; is true.

Performance of Test

7%

Proba.' of False negatives
accepting
H:p>0
5 '7
0
False positives Actual probability p [.5cm]

Needs an infinite number of samples to get ideal performances !

Performance of Test

INormonoonm

—
l-a -+ V/ &
Proba.' of False negatives
accepting
H:p>80
0—46 0 0+
False positives Actual probability p [.5cm]

If p e [0 — 6,0 + J], we say we are indifferent to know if p > 6

Summary

We want to test :

Hy : p>pg against Hq : p < p1, where pg =6+ 0 and p1 = 6 — 0.

With:

e Type erros o and 3, and

e Indifference region 20.

Bernouili Variables for experiments

Bernouili variable X; of parameter p

e Takes two values : X; =0 or X; = 1;
e PIX;=1=pand P[X;=0]=1—p;

e Realization is denoted ;.

Experiments

e We assume independent trials;

e We can generate as much trials as we want;

p is the probability to get a head ;

Associate a bernouili variable X; to each trial;

e X, = 1 iff the trial is a tail.

Two Algorithms
Algorithm 1 : Single Sampling plan
e Pre-compute a number n of experiments;

e n depends on §,a, and (3.

Algorithm 2
Basically a on-the-fly version of the Single Sampling Plan (in fact, this is
much more :-)!)

Single Sampling plan

Single Sampling plan : Principles
e Choose n and ¢ with ¢ < n;
e n observations x1,...,x, for n samplings X1,..., Xy;
o Y =31 xy;

e Accept Hy if Y> ¢ and H; otherwise;

Difficulty : Find n and ¢ such that « and 3 are satisfied

Single Sampling plan : o and 3
Definition 2. P[Y < ¢] = F(¢;n;p) = 25 Clpi(1 — p)™ .
Definition 3. F(c;n;0) : probability to accept Hj.
Definition 4. e F(e;mn;0+0) < a

e 1-F(eym;8—9) <p.

Single Sampling plan : Disadvantages
e Difficult to find ¢ and n : No unique solution;

e Difficult to minimize n;

Approximation algorithms exist (Haakan Youness).
Better for black-box systems (next part of the tutorial)..

Optimality (Hasting)

Thresholds Values

0—-0=0 0+6=1 n=1 c=0

0—-6=0 0+0<1 n = e c=0

0—56>0 0+d5=1 n:k}g%?é c=n-—1

Sequential Hypothesis Testing
Sequential Hypothesis Testing

e Check hypothesis after each sample and stop as soon as possible

e We can find an acceptance line and a rejection line given a, 3,6, §.[.6cm)]

Continue until a
line is crossed

Number of
positive
samples

Cofptinue Sampling

Generate samples

using simulation T~

Number of Samples

Wald’s Testing
Compute

O Pr(X;=x; |p=0-0) (681 -0+ §mdm "

PrX;=mz;|p=0+6) (0+3)m(1—0—0)mdn’

e W > (1-p)/a: H; is accepted,;
e W < 3/(1—a): Hyis accepted.

More Mathematics
e In theory : the test does not guarantee o and (!
e New parameters o and 3’ such that

- a’gﬁ and ﬁ’g%

—d+ 0 <a+ps;

e In practice : one observes that o and (§ are almost often guarantee,
and it may even be better!

Ezxzample 5. Let pg = 0.5, p1 =0.3, a =0.2, =0.1":
e In theory : /<32 =0.222... and F'<ZL = 0.125;

e Computer simulation : o’ = 0.175 and 3 = 0.082.

Performances (1)

e Single sampling plan can be better than SPRT' !
e SPRT is, in practice, more efficient;
e Expected sample size E, (Wald’s formula) :

— SPRT minimizes E, at § + 6 and 6 — 6;

— E, increases from 0 to 6 — ¢;

— E, decreases from 6 + 6 to 1;

— Between 6 — § and 6 + § : increase and then decrease.

Performances (2) : SPRT

Indifference region Number of

20 executions
0.1 55
0.05 106 . ' .
0.02 998 Number of trajectories against 26
0.01 627
0.005 1056
(= =0.02)

e m increases linearly if § decreases.

Performances (3) : SPRT

Test strength Number of

al(=) executions

le 2 335

le—4 502 . . .

Lo—6 g5 Number of trajectories against « (5 = «
1le~8 1301

1e—10 1467

and 26 = 0.02)

e m increases logarithmically if o and/or 3 decrease.

From Flipping a coin to Model Checking

Fact
Flipping a coin is nothing more than testing whether a finite execution
satisfies a property.

Results
Consequence : Wald’s testing directly applies to model check properties of
white-box stochastic systems.

Properties
e Natural : those that can be checked on finite execution;

e (loing further : Some properties on infinite executions:

Next part of the tutorial.

Why are nonpure systems forbidden?

e We sample a unique distribution;

e Sampling several distributions would require to distinguish between
them;

e This cannot be done on the sole basis of running the system.

10

Advantages
Advantages

e Easy to parallelize (independent sampling, unbiased distributed sam-
pling);

e Independent of system’s size;

e Independent of system’s probability distribution;
e Easy to trade accuracy for speed;

e Uniform approach;

e Easy to implement :

— In most cases, one only need to implement a “trace checker” that
tests whether an execution satisfies a given property;

— No need for complex data structures.

A Note on Parallelization

e Observations are generated by different machines;
e Observations must be independent; :

— Using different seeds is not sufficient : it only determines initial
numbers, not the way the sequence is generated;

— Solution :

encode process ID directly is the generator.

e Slave - master : experiments are collected in ring-order.

5 Experiments
2 types of experiments

e A — Y Modulator (conversion : analogue to digital);

e Systems biology (briefly).

11

Modulator

Model Checking mixed-signal circuits
e Mature for digital designs but still new for analog and mixed design

e Difficult due to continuous and hybrid state variables

Probabilistic Model Checking
e Stochastic systems and/or stochastic uncertainties

e Exact solution is a difficult problem in general

Statistical Approach
e Use of numerical simulation

e Approximate solution with bounds on errors

Systems and Logics with Signals
Outline

Contents

Logics: LTL formulas
Let B be a set of predicates. The following defines an LTL formula:

¢:=TIFbeB|=¢|prV 2| Od|dlUde.

Let w = 8182...8k, |w| = k, w® = 8;8;41...8k, w(i) = s; and L be a mapping from
S to 28. We have:

-wET, wEFandwkE ¢ iff wl ¢

~wbwith be Biff b e L(w(0))

-wEM Vo ifwlEérorwE ¢

-wEQIff |w| > 1 and w! E ¢

- wE gilUde 1ff there exists 0 < i < |w| — 1 such that w? = ¢, and for each
0<j<i,w ¢

Additionally, we use the eventually operator { defined as $¢ = FlUU¢p. Note that
we only consider finite executions.

12

Logics: Execution Predicates

Definition 6 (Execution Predicate). Let X(S) be the set of all the executions of
an SSDES S. An ezecution predicate p for S is a mapping p : o € X(S) — p(o) €
{T,F}.

Ezample 7. Execution predicate p that decides whether the mean value of the

analog signal associated with o is > 0: N_1

plo)=T iff % Z ma(o(k)) > 0.

More complex functionals such as the Falrier transform can be used|.4cm]

Claim. Let § be an SSDES and ¢ be a Boolean combination of LTL formulas
and execution predicates. One can always associate a probability with the set of
executions of S that satisfy .

A Class of Mixed-Signal Circuits: A — Y Modulators
Outline

Contents

A — ¥ Modulators for Dummies
Analog to Digital converters (ADC)

e Converts analog signal into digital signals

e Used in many electrical devices interfacing with a physical environ-
ment[.5cm]

A — ¥ modulators
e Widely used family of ADCs

e Efficient processing of the quantization error, i.e., the difference be-
tween the analog input and the digital output

A Simple Discrete-Time A — X Modulator
Principle Control of quantization error using a feedback loop

13

Analog
Input

u(k)

o(k)

=u(k)—v(k)

v(k)

‘B

Integrator

Digital
Output
v(k)
(k) = Lwlk)
=2 (k—1)+0(k) — | —sign(z(k))
Quantizer

- The quantization error is the difference between the input and the

output

- The integrator stores the summation of Js in a state variable x

- The quantizer produces the output based on the sign of x

Higher Order A — Y Modulators

e More complex designs use more than one integrator[.3cm]|

e The order of a A—¥ modulator is the number of integrators used|.3cm]

ing the analog to digital conversion

Beginning from order three, a stability issue appears[.3cm]

i.e. the integrators states can reach a saturation threshold compromis-

Experiments with a Third Order A — ¥ Modulator

Outline

Contents

Questions and Existing Results

First Question

When does saturation occur?

Second Question

14

Does saturation always imply a bad conversion?

Existing Results
e Hybrid system model;
e Some answer to the first question for a limited horizon;

e Nothing for the second question (Fourier transform!).

A third order A — ¥ modulator, Simulink model

- We get a stochastic system by randomly choosing the inputs u(k)
- State sy, is the tuple (u(k), z1(k), z2(k), z3(k),v(k))

- The next state sp41 is determined by the random choice of u(k + 1) and
computed by the Simulink engine

- For all k, u(k) is chosen uniformly in [—tmax, Umax][-3cm]

= Statistical analysis for all input signals of amplitude bounded by wax

Saturation Analysis

Probability of saturation occurrence for different values of uyax 7
e Let Satur be a boolean predicate
e For all state s = (u, x1,x2,x3,v), let L(s) = {Satur} iff |x3] > 1
We can then evaluate the formula Prsg({Satur).[.3cm] A tool :

e A routine checking o = {$Satur

e The sequential ratio testing algorithm which decides whether S |=
Pr>¢(¢) given 6, o, § and ¢

e A simple bisection procedure which tries to maximize the value of 8
for which the answer is true

15

Experimental Results

Umax Hypothesis Number
Accepted of executions

0.1 p<0 416

0.15 p > 0.0938 4967

0.2 p > 0.640625 17815

0.25 p > 0.984375 416

0.3 p>1 688

Table of results for p = Pr(o = {Satur), with « = 8 =1e 3 and § = le™?2

e Consistent with results formally obtained in [Dang Donze Maler 04] but on
a much larger horizon (24000 as compared to 31)

e The expected number of simulations grows logarithmically w.r.t. the inverse
of a and 3 and polynomially w.r.t. the inverse of §

Frequency Domain

1500 ; : ; v '
DD 500 1000 15.DD ZD.DD ZE;DD 3000
nu

1500 T T T T T

‘IDDD e , ‘ _

O i el Mt e ittt asok b il i

o 500 1000 1500 2000 2500 3000

nu [.5cm]

e Quantization pushes error towards high frequencies;

e Suggestion : Check for quality under small frequencies.

16

Execution Predicate in the Frequency Domain

e Let Fy(o) and F,(o) be the Fourier Transforms (FTs) of the input
signal associated with o[.2cm)]

o Let d;o (gl,ég) be a measure of the distance between two FTs él and

& for frequencies smaller than vo[.2cm]

e Then we can derive an execution predicate py such that

pf(o) =T iff d;O(Fu(O'),Fv(O')) <,

For vy = 100H z and € < .1 the predicate discriminates between “correct”
and “failed” conversions

Frequency Domain Predicate, Experimental Results

Umax Hypothesis Number
Accepted of Executions

0.8 p>1 688

0.9 p > 0.984375 612

1.0 p > 0.984375 1248

1.1 p > 0.875 6388

1.2 p > 0.578125 15507

Table of results for p = Pr(py), with a = = le3 and 6 = le™2

Experiments Interpretation
The previous results show that

e For umax > 0.3 the system satisfies Satur with probability 1
o For umax < 0.8 the system satisfies py with probability 1 [.5cm]

Thus we statistically established that for 0.3 < wumax < 0.8, the formula
OSatur A py is satisfied with probability 1, meaning that saturation can occur
without a dramatic decrease in the conversion quality|.8cm]

This extends the results in [Gupta Krogh Rutenbar 04] and [Dang Donze Maler 04]
where it was conservatively assumed that the absence of saturation was necessary
for a proper behavior

17

Conclusion and Perspectives

Conclusion on A — ¥ Modulator
Summary

e A framework for the statistical probabilistic Model Checking of mixed-signal
circuits

e The simulation-based approach makes it easier to deal with functionals on
executions such as the Fourier transform

e Application to a non-trivial case study for which we improved previous results

Future work

e Extension to unbounded execution and dense time using appropriate moni-
toring techniques

e [ogic mixing temporal properties and partial execution predicates

e More precise definitions and specifications for frequency domain properties
based on the need of analog designers

System’s Biology
Systems Biology

e In presence of a few species, reactions are defined in terms of stochastic
processes;

e In such context, one wants to exercise the master equation that governs
system’s evolution.

Definition 8. The master equation : phenomenological set of first-
order differential equations describing the time evolution of the prob-
ability of a system to occupy each one of a discrete set of states.

Situation

e We want to Solve stochastic equations, but

e Many stochastic equations are numerically intractable!

18

BionetGen and Gillespie

e BionetGen Toolset:

Very simple language to model proteins and proteins-proteins
interactions :

Uses rewriting rules like the k-calculus

e Gillespie algorithm simulates rule applications (Continuous-timed Markov
Chains);

e Systems can be big : more than 6 hours for a simulation !

= distributed implementation.

BionetGen Language (1)

The language allows to describe

e Molecules and functional;

States of functional;

Binding between functional and molecules;

Chemical reactions;

Available at

http://bionetgen.org/index.php/Main_Page

BionetGen Language (2)
Ezxample 9. Molecule

R(lsd:Y”’P)

Ezample 10. Chemical reaction

L(r) + R(1,d) <-> L(r!'1).R(1!'1,d) kpl, kml

19

Biolab

e Combine BionetGen with SPRT;
e A logic for biologist;

e Formal validation of observations (T-Cell model, ...).

Architecture of BIOLAB

Sequential
_________________________ Hypothesis BioNetgen
A Testing Model

Algorithm

BioNetgen

E Y

' | Temporal Logic Trace Simulation
Property Verifier Trace

E Y

Property

E Verified | Failed

E by Trace
T L CCTREEFFERES Y [.5cm)]

The T-Cell model

e Detect antigen and should react properly;

20

e Should not react to non pathological proteins;

e Property : the system can alternate between reactive an nonreactive
states.

6 Bayesian Model Checking

Bayesian Testing

1. Prior probability (informative Vs. non informative) on Hy and Hy;
2. Prior information is used to decrease the number of experiments;

3. Bayesian Testing is more driven towards compound hypothesis than
statistical hypothesis testing!

Future Work : Bayesian risk and nested operators.

Non Informative Prior

0 | Bayes' Factor Test | SPRT (6 =0.01) | SPRT (6 = 0.001)
H, Hy H, Hy H, Hy
0.95 2 275 349
0.9 8 610 608
0.8 | 35* - - - -
0.7 | 81* - - - -
0.6 | 591* - - - -
0.5 272 - - - -
0.4 156 - - - -
0.3 16 - - - -
0.2 5 909 929
0.1 9 446 468
0.05 2 201 189

7 What’s next?

Next part of the tutorial :

21

e Model Checking PCTL* using hypothesis testing;
e Neested probability operators;

e Black-box systems.

22

1 Overview
Session I Overview

e Sampling + Hypothesis testing can be used to infer parameters of a Bernoulli distribution
e Application: Verification of properties P>g(1)) where 9 is such that
— for every execution o, there is a finite prefix u such that o = ¢ iff u = v, and

— for any finite prefix u, u =9 can be easy checked

Session IT Overview

e Extend ideas of Session I to develop algorithms to verify properties in a full logic like PCTL.
Main challenges include verifying properties P>g(1)), where

— Determining the satisfaction of i) on an execution requires further statistical tests

— Satisfaction of 1 on an execution not determined by a finite prefix, e.g., pU q

e Use ideas of statistical model checking to verify “black-box” or “model-less” systems

Session IT Outline
e Overview of Measure Spaces, Markov Chains, and PCTL
e Model checking PCTL

e Model checking black-box systems

Part 1
Preliminaries

2 Measure Spaces

o-Field

Definition 1. A o-field over a set X is a collection, X, of subsets X such that
e X e}
o If Ac ¥ then X\ A€ X, and
o If {A;}icr is a countable collection of sets from ¥ then J;c; A; € X

Ezample 2. Given a set X, the collections ¥1 = {}), X} and ¥y = 2% are examples of o-fields.

Smallest o-Field
e Intersection of arbitrary o-fields is again a o-field

e Thus, given any collection C' of subsets of X, there is a unique smallest o-field that contains

C

e This is said to be the o-field generated by C

Probability Measures

Definition 3. A probability measure, p, over (X, %) is p: ¥ — Rx>q such that
e (@) =0
e For a countable collection of pairwise disjoint sets {A;}icr, u(U;er Ai) = D e 1(As)
o u(X)=1

3 Markov Chains

Markov Chain

Definition 4. A Markov Chain over a set of propositions AP is a M = (Q, gs, d, L), where
e () is a set of (not necessarily finite) states,
e s € (is the initial state,
o L:Q — 247 is a labelling function, and

e §:QxQ — [0,1] is a transition function with the property that for every g, Zq’EQ 5q,q) =1

Measurable Sets

e A run p is an element of Q“. p starts from ¢ if the first state in p is g; the collection of all
such runs is denoted by path(q).

e For u € Q*, define C,, = {u-p|p € Q¥}
e The measurable sets of runs are those belonging to the smallest o-field generated by {C, |u €
Q"}
Probability Measure Defined by Markov Chains

Definition 5. The probability measure on runs defined by M = (Q, gs, 0, L) is the unique measure,
1, satisfying the following. For u = qq, q1, - --qn

n—1

w(Cy) =[] 8(gi, qi+1)

=0

Sampling executions of a Markov Chain generates runs according to this measure.

4 PCTL

PCTL Syntax

Definition 6. The formulas of PCTL over a set of atomic propositions AP are given by the
following grammar

pu=truela|-¢|oA@|Baw(¥)
where a € AP, e {<,<,>,>}, 0 € R, and ¢ is a path formula given by the following grammar

Y= Xp|pUp

PCTL Semantics State Formulas
Definition 7. Satisfaction of a state formula ¢ at a state ¢ is inductively defined as follows
e ¢ = true
e gFaiff a€ L(q)
e g =~y iff ¢ does not satisfy ¢
e E 1A iff g =1 and g = o
® ¢ = Puo(v) iff u({m € paths(q) | 7 = ¢}) =6 !

PCTL Semantics Path Formulas

Definition 8. Satisfaction of a path formula ¢ on a path @ = qgq; - - is inductively defined as
follows

e TEXpiff g1 o

o m[= p1Ups iff there is an ¢ such that ¢; = @2 and for all j <1, ¢; = ¢1

We say M = ¢ iff g5 = ¢

PCTL Syntax Abbreviations
We will use the following abbreviations

® 1V = (-1 Apa)

)

o 1 US"py says that “po holds within n steps and ¢ holds until then’

'For any state ¢ and path formula v, {7 € paths(q) | 7 |= v} is measurable.

Part 11
Model Checking PCTL

5 Basic Operators

5.1 Overview

Schematic Picture

System S, a, B,

Sample
Run

es

Simulator

/')
Checker
Get \

run N
from ¢

o

The system model could be any probabilistic model with a well understood probability space over
executions that can be sampled, and a logic over that probability space.

Properties of the Algorithm

Let A‘SM (g, , a, B) be the result of the algorithm when checking if ¢ holds in state ¢ in model M,
with error parameters o and (3, and indifference region 4. If M is such that

C For every subformula of ¢ of the form Ps,(¢) and every state ¢/, the measure of paths
p—i—« p+5]

l1—-a *1-0

satisfying 1 is not in |

then
Prob[AY(q, ¢, a,) = true | ¢ £ ¢] <o and

PrOb[Af\/t<Q7(pa a,,@) = false ‘ q ': Sp} S 6

Algorithm Structure

Adalg, 0,0, 8) {
switch (p) {
case true: return true
case a € AP: return (a € L(q))
case —p': return verifyNot(q, ¢, a,)
case 1 Apa: return verifyAnd(q, ¢, a,)
case Ps,(y): return verifyProb(q, ¢, a,)

}

We cannot distinguish between strict and non-strict inequalities in P, (1). Also, P<, (1)) is logically
equivalent to = Psp(—)).

5.2 Algorithm for Boolean Operators

Negation

verifyNot(g, ~¢’, o,) {

return ﬁA(/S\/t (q, 90/7 B, CV)

}

Observe that (inductively)

Conjunction

B > ProblAlY(q,¢,8,a) = true | ¢ & ¢]
¢, ¢, o, B) = false | ¢ = —¢/]

(
(
Eq7tp’,ﬁ,a) = false | ¢ = ¢]

I

..U
S
b

Il
]
.,
o
l=n
b
<
R
J
.6\
L
=
I
-+
=]
o=
)
B
T~
d
‘G\

verifyAnd(q, o1 A p2,a,0) {
return A% (q, o1, 8/2) A Al (q, 02,0, 8/2)

}

Observe that (inductively)

Prob[A%(q, 01 A @2, 0, 8) = false | q = @1 A]

<

Prob[A% (g, ¢1,a, 8/2) = false V AS(g, p2,a, 3/2) = false | ¢ = 1 A @3]
Prob[A)(q, 1, a, 3/2) = false | q |= @1 A pa] +

Prob[A‘;M(q,cp27a,ﬂ/2) = false | ¢ = ¢1 A p2]

Prob[AS (g, ¢1,, 8/2) = false | q = ¢1] +

Prob[AS(q, ¢2, @, 3/2) = false | q k= 2]

B/2+6/2=0

Conjunction (contd)

Observe that (inductively)

Prob[A% (g, ¢1 A @2, a, 8) = true | q [~ 1 A 2]
< max(Prob[Al(q, 1 A 2, @, B) = true | q [~ 1],
Prob[A%, (g, p1 A p2,a, B) = true | g = p2])
max(Prob[A%, (¢, ¢1, @, B) = true | g ¥ 1],
Prob[A%(q, g2, @, B) = true | g [~ pa])

IN

6 Probabilistic Operator

6.1 Simple Formulas

Simple Formulas

Definition 9. A simple formula is of the form P>,(¢), where
e 1) only uses the path operators X and US", and

e 1) does not have any probabilistic operators

Checking Simple Formulas

To check if ¢ satisfies a simple formula P>, (1)), use either the single sampling plan or sequential
hypothesis testing to statistically determine is the measure of paths satisfying ¢ is > p with
indifference region 2. Draw samples as follows

Simulate the system from ¢ until you get a finite path that either provably satisfies 1)
or provably violates 1)

6.2 Bounded Path Formulas

Bounded Path Formulas

Definition 10. A bounded path formula is of the form P>,(¢), where
e 1) only uses path operators X and US"

1) may have nested probabilistic operators.

Checking Bounded Path Formulas
Challenge

Consider a formula P>, (X P>,(Xa)), and drawing a sample run p = ¢, ¢, . ..

e We cannot determine if ¢; = P>y(Xa), and so we don’t know if p = X P>,y (Xa)

e We can statistically determine if ¢; = P>,(Xa). How do we account for the error in the
estimation?

Proportion of Fair Coins

Problem

Given a bag of coins, are most (75%) of the coins fair? If the coins can be physically examined to
fair or not, then we have the following situation We can test the random variable X statistically to
determine if Prob[X = fair] > 0.75.

Proportion of Fair Coins

If we cannot physically examine the coins to determine if they will be fair, we still want to test
random variable X below. But we observe the following random experiment Y

Bag ———— Sample

+—— fair/unfair

Bag ———— Sample

+— fair/unfair

Relating X and Y

Let X be Bernoulli with parameter p, and Y be Bernoulli with parameter p,. Suppose the test
has errors («, (3), we have
Prob[Y = fair | X # fair]

<
Prob[Y # fair | X = fair] <

Q@
5
Relating X and Y

Let X be Bernoulli with parameter p,, ¥ be Bernoulli with parameter p,, and test have error
(ar, B). Then,
py = ProbY = fair]
= Prob[Y = fair | X # fair]Prob[X # fair]
+Prob[Y = fair | X = fair|Prob[X = fair]
py <a(l—pg)+Llps

py =1 —PB)pa
as Prob[Y = fair | X = fair] > 1 — 4. This means if p, < p;f;a then p, < p—0 and if p, > %

then p, > p + 0. Thus, we sample from Y and test the sample against p with indifference region
24.

Algorithm for Bounded Path Formulas

verifyProb(q, Pop(1), . 8) {
Do as in simple hypothesis testing of Bernmoulli variable
except when drawing a sample do the following ...
Get sample run 7 from ¢
switch (¢) {
case X¢': return A% (n[1],¢, 3, a)
case o1 US" pa: return verifyBUntil(q, v, a, ()

Bounded Until

To check if 7 satisfies 1 U "9, we check if there is an i < n, such that 7[i] = @2, and 7[j] E ¢1,
for j < i. We do these tests statistically, giving us the following test.

verifyBUntil(q, o1 US"™ 2,0, B) {
for i =0 to n do
it A% (x[i], 02, 8/n, @) then return true
else if not A% (n[i],¢1,3/n, &) then return false

Bag ——— Sample Test fair/unfair

Justification for parameters is same as for conjunction.

6.3 Unbounded Until
Unbounded Until

When drawing samples for bounded path formulas we know when to stop simulating
e when checking X ¢’, we simulate the system for one step
e when checking 1 US" @9, we simulate for at most n steps

But for ¥ = @1 U 2 we don’t know when to stop simulation; there maybe no finite prefix that
determines the unsatisfiability ¢ on a run.

Stopping Probability

We will modify the simulation as follows: at every step, either stop simulation with probability
ps, or continue the simulation with probability 1 — ps. Formally, given M = (Q,gs,0, L), take
M =(QU{q1},qs,0, L") where

e I'(q) = L(q) for g € Q, and L'(q,) is such that ¢, F~ ¢

e For every q,¢' € Q, §'(¢,q1) = ps and 8 (¢,¢') = (1 — ps)d(q,¢'), and §'(q1,q1) =1

Relating the two Markov Chains

Proposition 11. Let the measure of paths in M from q € Q satisfying 1 U @a be denoted by p™
and the measure in M’ be denoted by p™’. If N is the number of states in M then

pM(1 = po)N < pM < pM

Proof. e The measure of paths from ¢ satisfying ¢1 U ¢ is obtained by solving a system of
equations, through (say) Gaussian elimination

e Suppose the measure of paths from ¢ is the ith variable solved

e By induction on 4, that pM(1 — p,)* < pM < pM O
Checking Unbounded Until Formulas

e Sample finite paths from M’

e Using the relationship between the Markov Chains M and M’ setup the hypothesis testing
with appropriate indifference regions like the case of nested probabilistic operators

Discussion of Unbounded Until Checking

e The algorithm presented depends on the number of states N, and the stopping probability
need to make the conditions workout can be small

e [SVA 05] Another algorithm with possibly better sample performance is as follows

— Use a special algorithm to check if a state ¢ satisfies P—o(¢1 U ¢2), by drawing samples
from M’

— Draw samples from M by stopping either when state satisfying 2 is encountered or
when a state satisfying P—o(y1 U ¢2) is encountered
An Alternate Statistical Approach

e The correctness guarantees of the statistical model checker only apply when the measure of
paths satisfying the path subformulas are bounded away from the threshold to which they
are compared.

e The basic test for a probabilistic operator tests the hypothesis Hy : p’ > p + § against the
hypothesis Hy : p' <p—9¢

e An alternate approach [SVA04,You06] does two comparisons: (a) the hypothesis H} : p’ >
p+ 0 against H{ : p’ < p, and (b) the hypothesis H3 : p' < p —§ against H? : p' > p

— If H} is accepted over Hi then we say P>,(t) holds
— If H3 is accepted over H then we say P>p(1)) does not hold
— If neither of the above cases happen, the algorithm says “unknown”

e The basic probability test can be extended to all of PCTL

Beyond PCTL and Markov Chains

e The statistical model checking approach can be applied to any situation where the model’s

probability space, simulation algorithm, and specification logic are intrinsically tied, not just
Markov Chains and PCTL

e Similar ideas have been used to analyze “real-time” models like CTMC, SMC against CSL
specifications

e The approach has also been used to check properties based on FFT's (Session I)

Part II1
Model Checking Black-Box Systems

7 Introduction

7.1 Motivation
Black-Box Systems

Generating samples from any state of the system as desired maybe unreasonable in certain situa-
tions.

e When monitoring/observing a remote system over the network

e When analyzing third-party code

7.2 Problem Setup

Black-Box Systems: Schematic Picture

EE—
System 2
«)

A

Yes, p-value

W

EE——
. Sample Model ,
~

No, p-value

Limitations Imposed by Problem Setting

e Since the sample runs are drawn independent of the verification process, the algorithm cannot
guarantee the correctness of its result to be within given error bounds.

e Instead, the algorithm will compute a qualitative measure of the confidence in its answer
(p-value)

e The sample may not contain “statistical witness” for the satisfaction or violation of a property;
the algorithm answers “don’t know” in such cases

Comments about the Algorithm

e Runs will be assumed to be generated from a “Markovian” process; so suffix of run starting
from a state ¢ are faithful samples drawn from path(q)

e Useful results can only be obtained if the sample contains sufficiently many runs from each
“relevant state”; thus, the model have finitely many “states” like a DTMC, CTMC

e Since the number of sample runs is finite, and each run is finite, unbounded until operators
are essentially bounded until operators

10

8 The Algorithm

8.1 Probabilistic Operators
Algorithm Structure
verifyAtState(q,) {

switch (p) {

case true: return (true,O0)
case a € AP: return ((a € L(q)),0)

case —p': return verifyNot(q,)

case ¢1 Aps: return verifyAnd(q, ¢)
case P>,(1): return verifyProb(g,)

}

Algorithm returns a result (true, false, or unknown) and a p-value

Non-nested Probabilistic Operator: Observations

Suppose we want to check if ¢ satisfies P>p(¢0). The n sample runs from ¢ fall into 3 categories
e Those that satisfy v; let there be nT such runs
e Those that satisfy —); let there be n such runs
e Those that satisfy neither i) nor —). This happens when short. Let there be ns such runs

Thus, the sum of all positive observations is at least nT, and at most n —n .

Non-nested Probabilistic Operators: Algorithm

Let X be the random variable denoting drawing a path from ¢ that satisfies 1, and let p’ be its
parameter

o If nT > np then we say ¢ satisfies P>,(¢) and the confidence in the answer is bounded by
Prob[>> X > nt | p = p]

o If n —ny < np then we ¢ does not satisfy P>,(¢) and the confidence is bounded by
Prob>> X <n—n_ |p =p]

e Otherwise, we say “don’t know”

Nested Probabilistic Operators

e Once again the situation can be modelled as one where instead of observing a random variable
X with parameter p,, the sample provides evidence for another random variable Y with
parameter p,

e If v is the p-value associated with Y, we can bound py as p, — ap, < py < pr + (1 — pa)a
e Using these bounds, we can bound the confidence as Prob[} Y > nt |p, = p — ap| or
Prob[} Y <n—ny |py =p+ (1 —p)a]

11

Nested Probabilistic Operators: Algorithm

verifyProb(q, Ps,(¥)) {

max = 0; min = 0; o =0;
for each sample path w starting at g {

(y, ') = verifyPath(m,);

if y =don’t know then

max = max+1

else min = min+y; max = max+y;

a = max(a, a’)
}
if (min>p+ (1 — a)p) then

return (true, Prob[>.Y > min|p, =p+ (1 — a)p])
else if (max< p — ap) then

return (true, Prob[>. Y < max|py, =p — ap])
else return (don’t know, 0)

8.2 Boolean Operators
Negation
verifyNot (g, —¢’) {

(y,) = verifyState(q, ¢’)
return (—y,a)

}
Conjunction
o If ¢ satisfies 1 with p-value a; and satisfies 9 with p-value ao then ¢ satisfies p1 A o with
p-value max(aq, ag)
e If ¢ does not satisfy ¢ with confidence ag (or ¢o with as) then ¢ does not satisfy ¢1 A @9
with confidence oy (ag)
o If g does not satisfy ¢1 and @9 with confidence a;; and aw, respectively, then ¢ does not satisfy
©1 A o with confidence min(ay, ag)
Extensions
e Ideas used to check PCTL properties can easily be extended to check properties in CSL
Conclusions

e Statistical hyposthesis testing can be used to verify systems in a model independent way,
against a variety of properties

e The techniques have been used in a few case studies (including those discussed in Session I)

e There have also been some examples analyzed to get a better sense of the samples needed,
and how the approach compares to more traditional numerical based approach

12

