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Introduction: rare events

Rare events occur when dealing with performance evaluation in many
different areas

in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport. probability of penetration of a nuclear shield,
in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),
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What is a rare event? Why simulation?

@ A rare event is an event occurring with a small probability.

@ How small? Depends on the context.

@ In many cases, these probabilities can be between 1078 and 1071°, or
even at lower values. Main example: critical systems, that is,

» systems where the rare event is a catastrophic failure with possible
human losses,

» or systems where the rare event is a catastrophic failure with possible
monetary losses.

@ In most of the above problems, the mathematical model is often too
complicated to be solved by analytic or numeric methods because

» the assumptions are not stringent enough,

» the mathematical dimension of the problem is too large,

» the state space is too large to get a result in reasonable time,
>

@ Simulation is, most of the time, the only tool at hand.
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Monte Carlo

@ In all the above problems, the goal is to compute 1 = E[X] for some
random variable X (that is, it can be written in this form).
@ Monte Carlo simulation (in its basic form) generates n independent
copies of X, (X;, 1 < i< n). Then,
_ 1<
> X, == ZX,- is an approximation (an estimation) of u;
=
» X, — p with probability 1, as n — oo (Strong Law of Large Numbers).
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@ Accuracy: how accurate is X,? We can evaluate the accuracy of X,
by means of the Central Limit Theorem, which allows us to build the
following confidence interval:

- Ca0 = CaO
CI_<X"_W'X"+\/E>

» meaning: P(u € Cl) =~ 1—«; o« confidence level

> (that is, on a large number M of experiences (of estimations of y using

)_<,,), we expect that in roughly a fraction « of the cases (in about aM
cases), the confidence interval doesn't contain )

> o = ®7H(1 — a/2) where ® is the cdf of N(0,1)

» 02 = Var[X] = E[X?] — E?[X], usually unknown and estimated by

R n o -
2 _ 2 _ 2
5"*n—1;X' —— X7
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Remarks on the confidence interval

Size of the confidence interval: 2¢c,0//n.

The smaller o, the more confident we are in the result:

P( p belongs to Cl ) = 1 — a.

@ But, if we reduce a (without changing n), ¢, increases:
» o = 10% gives ¢, = 1.64,
» a = 5% gives ¢, = 1.96,
» a= 1% gives ¢, = 2.58.

The other way to have a better confidence interval is to increase n.

The 1/4/n factor says that to reduce the width of the confidence
interval by 2, we need 4 times more replications.
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A fundamental example: evaluating integrals

@ Assume p = /f(x) dx < oo, with / an interval in R€.
!

@ With an appropriate change of variable, we can assume that
I =[o0,1]9.

@ There are many numerical methods available for approximating .
Their quality is captured by their convergence speed as a function of
the number of calls to f, which we denote by n.

Some examples:

» Trapezoidal rule; convergence speed is in n=2/9,
» Simpson's rule; convergence speed is in n=*/9,

» Gaussian quadrature method having m points; convergence speed is in
—(2m-1)/d
n :

For all these methods, the speed decreases when d increases
(and — 0 when d — o).
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The “independence of the dimension”

@ Let now X be an uniform r.v. on the cube [0, 1]¢.

@ We immediately have = E[X], which opens the path to the Monte
Carlo technique for approximating y statistically.

@ We have that

» X, is an estimator of our integral,
» and that the convergence speed, as a function of n, is in n=1/2, thus
independent of the dimension d of the problem.

@ This independence of the dimension of the problem in the
computational cost is the main advantage of the Monte Carlo
approach over quadrature techniques.

@ In many cases, it means that quadrature techniques can not be
applied, and that Monte Carlo works in reasonable time with good
accuracy.
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Other examples

@ Reliability at t:

C(t) is the configuration of a multicomponent system at time t;

s(c) = 1( when configuration is ¢, system is operational )
X(t)=1(s(C(v))=1forall u<t)

Xa(t) = 71307, Xi(t) is an estimator of the reliability at ¢, with

Xi(t), -+, Xu(t) niid copies of X(t).

vvyVvYy

@ Mean waiting time in equilibrium:

» X; is the waiting time of the ith customer arriving to a stationary
queue,
» X, is an estimator of the mean waiting time in equilibrium.

@ etc.
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Improving Monte Carlo methods

@ Given a problem (that is, given X), there are possibly many
estimators for approximating p = E(X).

@ For any such estimator X, we can usually write
X=X, -, Xn)

where X1, -+, X, are n copies of X, not necessarily independent in
the general case.

@ How to compare X with the standard X? Or how to compare two
possible estimators of p, X1 and X537

@ Which good property for a new estimator X must we look for?

o A first example is unbiasedness: X is unbiased if IEJ()N() = p, which
obviously looks as a desirable property.

@ Note that there are many useful estimators that are not unbiased.
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@ From the accuracy point of view, the smaller the variability of an
unbiased estimator (the smaller its variance), the better its accuracy.

@ For instance, in the case of the standard estimator X, we have seen
that its accuracy is captured by the size of the associated confidence
interval, 2c,0/+/n.

@ Now observe that this confidence interval size can be also written
2¢a\/ V(X) -

@ A great amount of effort has been done in the research community
looking for new estimators of the same target p having smaller and
smaller variances.

@ Another possibility (less explored so far) is to reduce the
computational cost.

@ Let's look at this in some detail, focusing on the variance problem.
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@ Before looking at some ideas developed to build estimators with
“small” variances, let us look more formally at the accuracy concept.

@ The variability of an estimator )N(,, of p is formally captured by the
Mean Squared Error

MSE(X,) = E[(X — u)3], = V(X,) + B2(X,),
where B()N(,,) is the Biais of )N(,,,
B(X,) = [E(X,) — 4.

@ Recall that many estimators are unbiased, meaning that E(X,) =
that is, B(X,) = 0 (and then, that MSE(X,) = V(X,)).

@ The dominant term is often the variance one.

@ In the following refresher, the goal is to estimate u = E(X) where X
has cdf F and variance o2, Recall that V(X,) = o2/n.
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Variance reduction: antithetic variables

@ Suppose n is even, that is, n = 2k.

@ Assume that the ith replication X; is obtained using X; = F~1(U;),
with Uy, -+, U, i.i.d. with the Uniform(0,1) distribution.

@ Let us define a new estimator )N(gk using half the previous number of
uniform r.v.: Xy is built from Uy, - -+, Uy using

sz:%z::{ YU+ Fl1-U )]

@ Observe that if U is Uniform(0,1), 1 — U has the same distribution
and both variables are negatively correlated:

Cov(U,1— U) = E[U(1 — V)] — E(U)E(1 — U) = —1/12.
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@ For the variance of )N(gk,

with Y; = F~1(U;) and Z; = F~1(1 - U)).

o After some algebra, writing back 2k = n,
~ 1/,
V(%) = . (a + Cov(Y, Z)),

with (Y, Z) representing any generic pair (Y;, Z;).

@ It can now be proven that Cov(Y, Z) < 0, due to the fact that F~1 is
not decreasing and that U and 1 — U are negatively correlated, and
thus ~

V(X,) < V(Xp).

@ This technique is called antithetic variables in Monte Carlo theory.
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Variance reduction: common variables

@ Suppose now that X is naturally sampled as X =Y — Z, Y and Z
being two r.v. defined on the same space, and dependent.

o Let us denote V(Y) =03, V(Z) = 0%, Cov(Y,Z) = Cy 7z

@ The standard estimator of u is simply

X, =Y, — Z,.

Its variance is 1
V(%) = = (o} + 03 —2Cv.2).

@ To build Y, and Z, we typically use Y; = F;l(UL,-) and
Zi = FZ_I(UQJ) where the Uy, p, m=1,2, h=1,--- ,n, are iid
Uniform(0,1) r.v. and Fy, F are the respective cdf of Y and Z.
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@ Suppose now that we sample each pair ( Yk, Zx) with the same
uniform r.v. Ug: Y = FyH(Uk) and Z = F; 1 (Uy).

@ Using the fact that F;l and FZ_1 are non increasing, we can easily
prove that Cov( Yy, Zx) > 0.

@ This means that if we define a new estimator )N(,, as

n

Xo =~ S [FMU) = F7H(U)]
k=1
we have _ B
E(Xn) = E(Xa) = &,
and

V(X,) < V(X,).

@ This technique is called common variables in Monte Carlo theory.
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Variance reduction: control variables

@ Here, we suppose that there is an auxiliary r.v. C correlated with X,
with known mean E(C) and easy to sample.

@ Define X = X 4+ ~(C —E(C)) for an arbitrary coefficient v > 0. See
that E(X) = p.

e We have V(X) = 02 — 2yCov(X, C) +~+2V(C).

o If Cov(X, C) and V(C) are known, we set v = Cov(X, C)/V(C) and
we get

X = (1 — giyc)az <02

ox,c being the coefficient of correlation between X and C.
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Variance reduction: conditional Monte Carlo

@ Assume we have an auxiliary r.v. C, correlated with X, such that
E(X | C) is available analytically and C is easy to sample.

@ Since E[E(X | C)] = p, the r.v. E(X| C) is an unbiased estimator
of .
@ From
0? = V(X) = VIE(X | O)] + E[V(X | O)],

we get
: V[E(X | C)] = 0® —E[V(X | C)] < o2

because V(X | C) and thus E[V(X | C)] are non negative.

@ The corresponding estimator is

~ 1<
Xn = ;§E(X| G).

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 21 /72



Monte Carlo drawbacks

So, is there any problem with Monte Carlo approach?
Main one: the rare event problem
Another one: specification/validation of models

This tutorial focuses on the main one

e © ¢ ¢ ¢

There are many techniques for facing the rare event problem:

» for example, we have the variance reduction techniques described
before (there are other similar methods available);

» we will focus on the most effective ones in case of performance or
dependability (or performability) problems: importance sampling and
splitting.
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On accuracy

@ Resuming: how to improve the accuracy? Acceleration

> either by decreasing the simulation time to get a replication
» or by reducing the variance of the estimator.

@ For rare events, acceleration required! (see next slide).
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What is crude simulation?

@ Assume we want to estimate ;1 = P(A) for some rare event A.

@ Crude Monte Carlo: simulates the model directly.

where the X; are i.i.d. copies of Bernoulli r.v. X = 14.

@ Estimation

S|

e o[Xi] = (1 — p) for a Bernoulli r.v.
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Inefficiency of crude Monte Carlo: relative error

@ Confidence interval

(= e EE L g A1)

estimated by

N [in(l — fin) . [fin(1 — 1
(Nn—ca fin( nﬂn)ﬂun_'_ca fin( nﬂn))

where ¢, is the 1 — /2 quantile of the normal distribution, for n
large enough (Student law used otherwise).

@ Relative half width c,o/(v/nu) = car/(1 — p)/p/n — oo as p — 0.

@ For a given relative error RE , the required value of

inversely proportional to .
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Inefficiency of crude Monte Carlo: occurence of the event

@ To get a single occurence, we need in average 1/u replications (10°
for u = 1079).
@ If no observation the returned interval is (0, 0)

@ Otherwise, if (unlikely) one observation when n < 1/,
over-estimation of mean and variance

@ In general, bad coverage of the confidence interval unless n > 1/p.

@ As we can see, something has to be done to accelerate the occurence
(and reduce variance).

@ An estimator has to be “robust” to the rarity of the event.
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Modelling analysis of robustness: parameterisation of rarity

@ In rare-event simulation models, we often parameterize with a rarity
parameter € > 0 such that u = E[X(€)] — 0 as ¢ — 0.
@ Typical example
» For a direct Bernoulli rv. X =14, e = = E[14].
» When simulating a system involving failures and repairs, € can be the
rate or probability of individual failures.
» For a queue or a network of queues, when estimating the overflow
probability, e = 1/C inverse of the capaciy of the considered queue.
@ The question is then: how does an estimator behave as ¢ — 0, i.e.,
the event becomes rarer?
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Robustness properties: Bounded relative error (BRE)

@ An estimator X(¢) is said to have bounded relative variance (or
bounded relative error) if %(X(€))/u?(€) is bounded uniformly in e.
Equivalent to saying that o(X(¢))/u(e) is bounded uniformly in e.

@ Interpretation: estimating p(e) with a given relative accuracy can be
achieved with a bounded number of replications even if ¢ — 0.

@ When the confidence interval comes from the central limit theorem, it
means that the relative half width

a(X(¢))

C
(67 \/ﬁ

remains bounded as ¢ — 0.
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Robustness properties: Asymptotic Optimality (AO)

@ BRE has often been found difficult to verify in practice (ex: queueing
systems).

Weaker property: asymptotic optimality (or logarithmic efficiency) if

o INEXCE)
8 In(u()

(]

Equivalent to say that lim._qIn(a?[X(€)])/ In(u(€)) = 2.
Property also called logarithmic efficiency or weak efficiency.

(]

Quantity under limit is always positive and less than or equal to 2:
a?[X(€)] >0, so E[X?(¢)] > (u(€))? and then InE[X2(e)] > 21In u(e),
ie.,
InE[X?(€)]
In 11(e€)
Interpretation: the second moment and the square of the mean go to
zero at the same exponential rate.

<2

(]
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Relation between BRE and AO

@ AO weaker property: if we have BRE, 3k > 0 such that
E[X?(e)] < w2u2(e), i.e., INE[X?(€)] < Ink? + 21In pu(e), leading to
lime—o INE[X?(€)]/ In u1(€) > 2. Since this ratio is always less than 2,
we get the limit 2.

@ Not an equivalence. Some counter-examples:

» an estimator for which v = e~ /€ with 1 > 0, but for which the
variance is Q(1/¢)e~2"/¢ with @ a polynomial;
» exponential tilting in queueing networks.

@ Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...)
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Work-normalized properties

@ Variance is not all, generation time is important (figure of merit).

o Let 02(¢) and t,(¢) be the variance and generation time t,(¢) for a
sample of size n.

@ When t,(€) is strongly dependent on €, any behavior is possible:
increasing or decreasing to 0 as ¢ — 0.
@ Work-normalized versions of the above properties:
» The estimator verifies work-normalized relative variance if

3 (€)tn(€)
12(e)
is upper-bounded whatever the rarity, and is therefore a

work-normalized version of the bounded relative error property.
» The estimator verifies work-normalized asymptotic optimality if

im In t(€) + Ino2(e)

=2.
e—0 In /1,(6)
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Importance Sampling (IS)

@ Let X = h(Y) for some function h where Y obeys some probability
law P. _
IS replaces P by another probability measure P, using

Elx) = [ H)a20) = [ 1) G dB) = El(YILY)

> L = dP/dP likelihood ratio, )
» [E is the expectation associated with probability law P.

Required condition: d]f”(y) # 0 when h(y)dP(y) # 0.
If P and P continuous laws, L ratio of density functions f(y)/f(y).

x) = [ W)y = [ ) 2Ty = BRIV

o If P and PP are discrete laws, L ratio of indiv. prob p(yi)/pP(yi)
E[X] = h(yi)p( Zh vi) =E[h(Y)L(V)].
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Estimator and goal of IS
@ Take (Y, 1 <i < n)i.i.d; copies of Y, according to P. The estimator
is L
LS hvu
i=1
@ The estimator is unbiased:

Zh IL(Y?) ZIE[h VLY =

@ Goal: select probability law P such that

G2 [h(Y)L(Y)] = E[(h(Y)L(Y))*] = u* < o*[h(Y)]-

@ It means changing the probability distribution such that the 2nd
moment is smaller.
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IS difficulty: system with exponential failure time

@ Y: exponential r.v. with rate \.
@ A ="failure before T"= [0, T].
@ Goal: compute p = E[14(Y)] =1 — e *T.
@ Use for IS an exponential density with a different rate A
E[(1a(Y)L(Y)))] = /OT (2::;)25\6—”@/ - %ﬁz;m
@ Variance ratio for T =1 and A = 0.1:
variance ratio 52(14(Y)L(Y))/c?(14(Y))
.1
1.5 4
1
0.5
e e e R B

A=0.11 2 3 4 5 6 7
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o If A=[T,), i.e., p =P[Y > T], and IS with exponential with rate
A:

)\ze—(zx—Z\)T

X2r-1X)

eV

2
SNy g
)\e—iy> Ae Ty =

@ Minimal value computable, but infinite variance wen A>2\ IfA=1:

sl = [

variance ratio
'
2.5 1

2 .

1.5 A
1
0.5 L/
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Optimal estimator for estimating E[h(Y)] = [ h(y)L(y)dB(y)

@ Optimal change of measure:

. Jh(Y)
F= w5

@ Proof: for any alternative IS measure P/, leading to the likelihood
ratio L’ and expectation E/,

E[(h(Y)L(Y))?] = E[IA(Y)D? = E'[A(V)IL' (V)] < E'[(h(Y)L'(Y))]-

e If h>0, E[(h(Y)L(Y))2] = (E[h(Y)])?, i.e., 32(h(Y)L(Y)) = 0.
That is, IS provides a zero-variance estimator.

@ Implementing it requires knowing E[|A(Y')]], i.e. what we want to
compute; if so, no need to simulation!

@ But provides a hint on the general form of a “good” IS measure.
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IS for a discrete-time Markov chain (DTMC) {Y;, j > 0}

@ X = h(Yo,...,Y:) function of the sample path with
» P =(P(y, z) transition matrix, mo(y) = P[Yo = y], initial probabilities
> up to a stopping time 7, first time it hits a set A.
> wl(y) = Ey[X].

@ IS replaces the probabilities of paths (yp,. - ., ¥n),

n—1

P[(Yo, .-, ;) = (%o,-- -, ¥n)] = mo(¥0) H P(yj-1.%),

by B[(Yo,..., Ys) = (¥o,- -, yn)] st E[7] < co.
@ For convenience, the IS measure remains a DTMC, replacing P(y, z)
by P(y,z) and mo(y) by 7o(y).

(Y; P(Y,_1,Y))
o Then (Yo, ..., Y, —”0 O)H (Jl’yf
./
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lllustration: a birth-death process

Markov chain with state-space {0,1,...,B}, P(y,y +1) = p, and
P(y,y—1)=1-p,, fory=1,...,B—1

A ={0,B}, and let u(y) =P[Y>- =B | Yo =y].

Rare event if B large or the p,s are small.

(]

e © ¢

lf p,=p<1lfory=1,...,B—1, known as the gambler's ruin

problem.

An M/M/1 queue with arrival rate X and service rate u > A fits the

framework with p = A/(A + p).

@ How to apply IS: increase the p,s to p, to accelerate the occurence
(but not too much again).

@ Large deviation theory applies here, when B increases.

» Strategy for an M/M/1 queue: exchange X and
» Asymptotic optimality, but no bounded relative error.
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Zero-variance IS estimator for Markov chains simulation

@ Restrict to an additive (positive) cost
T
X=> c(Yi1,Y))
j=1

@ Is there a Markov chain change of measure yielding zero-variance?

@ Yes we have zero variance with

= _ P(y,z)(c(y,z) + pu(2))
POa) = PG wlely.w) + u(w))
P(y,z)(c(y,z) + u(2))
u(y)

@ Without the additivity assumption the probabilities for the next state
must depend in general of the entire history of the chain.
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Zero-variance for Markov chains

@ Proof by induction on the value taken by 7, using the fact that
1(Y7) = 0 In that case, if X denotes the IS estimator,

. . L P(Yi_1, Y
X = ZC(W*“K’)H%
i=1 j=1 (Yi-1,Y))

; j P(Yi—1, Y))u(Yj-1)
= Z C(Yifh Y,) H P(Yj—17 YJ)(c( Yj—la Y) + N(YJ))

v T (Y1)
R V= s es
= u(Yo)

@ Unique Markov chain implementation of the zero-variance estimator.

@ Again, implementing it requires knowing p(y) Vy, the quantities we
wish to compute.

@ Approximation to be used.
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Zero-variance approximation

@ Use a heuristic approximation fi(-) and plug it into the zero-variance
change of measure instead of u(-).

@ More efficient but also more requiring technique: learn adaptively
function p(-), and still plug the approximation into the zero-variance
change of measure formula instead of p(-).

» Adaptive Monte Carlo (AMC) proceeds iteratively.
* Considers several steps and n; independent simulation replications at
step i.
* At step i, replaces u(x) by a guess u')(x)
* use probabilities
)z Pyz(c.z + N(i)(z))

L
X Prwlew + pO(w))

* Gives a new estimation pl Y (y) of u(y), from which a new transition
matrix PU*Y) is defined.
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Adaptive stochastic approximation (ASA)

@ ASA just uses a single sample path (yp,. .., ¥n).
o Initial distribution for yp, matrix P(®) and guess 1(9)(.).
@ At step j of the path, if y; A,

» matrix PU) used to generate Yit1-
» From yj;1, update the estimate of x(y;) by
Uy = (1= a0 y)
P(yjs j+1)

+ ay) [C(w7w+1)+u‘j)(yj+1)] B0y yiin)’
i i+

where {a;(y), j > 0}, sequence of step sizes
» For § > 0 constant,

. v j+1 .
G+, y1.1) = max (P(yj ) [c(yﬂyﬁ;& ;)p(c; ) 03] 5> .
> Otherwise uU*1(y) = uW(y), PU(y,z) = PU)(y, 2).
PU (v, v)
>, PUD(y;,2)
o If y; € A, yjy1 generated from initial distribution, but estimations of
P(-,-) and p(-) kept.
@ Batching techniques used to get a confidence interval.
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» Normalize: PUtY(y;,y) =



Drawbacks of the learning techniques

@ You have to store vectors ,u(”)(~). State-space typically very large
when we use simulation...
@ This limits the practical effectiveness of the method.
@ Other possibility:
» Use K basis functions u()(-),..., u{¥)(-), and an approximation

p(-) =D aru().
k=1

» Learn coefficients a as in previous methods, instead of the function
itself.

> See also how best basis functions can be learnt, as done in dynamic
programming.
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lllustration of heuristics: birth-death process

o Let P(i,i+1)=pand P(i,i—1)=1—pfor1 <i< B -1, and
P(0,1)=P(B,B-1)=1.

@ We want to compute p(1), probability of reaching B before coming
back to 0.

@ If p small, to approach p(-), we can use

ply)=p" Vye{l,...,B-1}

with f1(0) = 0 and fi(B) = 1 based on the asymptotic estimate
p(i) = pB~" + o(pB).

@ We can verify that the variance of this estimator is going to 0 (for
fixed sample size) as p — 0.
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Other procedure: optimization within a parametric class

@ No direct relation with the zero-variance change of measure.
@ Parametric class of IS measures depending on vector 8, {P, § € ©}:
» family of densities fy, or of discrete probability vectors py.
@ Find
6* = argmaxyEg[(h(Y)L(Y))?].
@ The optimization can sometimes be performed analytically
» Ex: estimate p = P[X > na] for X Binomial(n, p)
> IS parametric family Binomial(n, ).
» Twisting the parameter p to § = a is optimal (from Large Deviations
theory).
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Adaptive learning of the best parameters

The value of 6 that minimize the variance can be learned adaptively
in various ways.

ASA method can be adapted to optimize 6 by stochastic
approximation.

We may replace the variance in the optimization problem by some
distance between Py and the optimal dP* = (| X|/E[|X|])dP, simpler
to optimize.

Cross-entropy technique uses the Kullback-Leibler “distance”

L " dP*
D(P*, Py) = E* [Iog dﬁ»e]

=k [E‘n);‘u o8 (E‘nﬂudﬂm)] - g [X11omPd]

Determine then

. . [dP .
?Eaé(IE [|X| log d]Pg} gweaé(IE [dIP"X‘ log d 9]
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Adaptive learning in Cross-Entropy (CE)

@ CE method applied in an iterative manner, increasing the rarity at
each step.

@ Start with 8y € © and r.v. Xy whose expectation is easier to estimate
than X.

@ At step i > 0, n; independent simulations are performed using IS with
0;, to approximate the previous maximization (P replaced by Py,)

@ Solution of the corresponding sample average problem

nj

1
Oit1 = arg HES . Z [ Xi(wij)l Iog(le’g(w,,J)) ( i)

=
where w; ; represents the jth sample at step /.

@ Kullback-Leibler distance is convenient for the case where By is from
an exponential family, because the log and the exponential cancel.
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Splitting: general principle

@ Splitting is the other main rare event simulation technique.

@ Assume we want to compute the probability P(D) of an event D.
@ General idea:
» Decompose
Di>--->Dn=D,
» Use P(D) =P(D1)P(Dy | D1) -+ P(Dm | Dm—1), each conditional event
being “not rare”,
» Estimate each individual conditional probability by crude Monte Carlo,
i.e., without changing the laws driving the model.
» The final estimate is the product of individual estimates.
@ Question: how to do it for a stochastic process? Difficult to sample
conditionally to an intermediate event.
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Graphical interpretation
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Splitting and Markov chain {Y};j >0} € Y

@ Goal: compute 79 = Pt < 74] W|th

» Ta=inf{j>0:Yj_1 £Aand Y; € A}
» 78 =inf{j >0:Y; € B}

@ Intermediate levels from importance function h: Y — R with
A={x€ Y :h(x) <0} and B={xe)Y: h(x) > (}:
» Partition [0, £) in m subintervals with boundaries
O=lo<li< - <lyy=1{.
> Let Ty = mf{J >0:h(Yj) > b} and D = { Tk < 7a}.

@ 1st stage:
» simulate Ny chains until min(7a, T1).
» If Ry number of chains for which D; occurs, p; = Ry /Ny unbiased
estimator of p; = P(Dy).

@ Stagel< k< m:
» If Rk_1 =0, py =0 for all | > k and the algorithm stops
» Otherwise, start Ny chains from these Ry entrance states, by
potentially cloning (splitting) some chains
» simulate these chains up to min(7a, Tk).
> Pk = Ri/Nk_1 unbiased estimator of px = P(Dx|Dk_1)
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Two-dimensional illustration

A3 B=A4

A2
Al
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The different implementations

o Fixed splitting:
» clone each of the Ry chains reaching level k in ¢, copies, for a fixed
positive integer ck.
» N, = cxRy is random.
o Fixed effort:
» N fixed a priori
» random assignment draws the N, starting states at random, with
replacement, from the R) available states.
> fixed assignment, on the other hand, we would split each of the Ry
states approximately the same number of times.
» Fixed assignment gives a smaller variance than random assignment
because it amounts to using stratified sampling over the empirical
distribution Gy at level k.

o Fixed splitting can be implemented in a depth-first way, recursively,
while fixed effort cannot.

@ On the other hand, you have no randomness (less variance) in the
number of chains with fixed effort.
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Diminishing the computational effort

@ As k increases, it is likely that the average time before reaching the
next level or going back to A increases significantly.

@ We can kill (truncate) trajectories hat go a given number 3 of levels
down (unlikely to come back), but biased.
@ Unbiased solution: apply the Russian roulette principle

> kill the trajectory going down with a probability rg. If it survives, assign
a multiplicative weight 1/(1 — rg).

» Several possible implementations to reduce the variance due to the
introduction of weights.
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Issues to be solved

@ How to define the importance function h?

>

If the state space is one-dimensional and included in R, the final time is
an almost surely finite stopping time and the critical region is

B = [b, o0), any strictly increasing function would be good (otherwise
a mapping can be constructed, by just moving the levels), such as for
instance h(x) = x.

If the state space is multidimensional: the importance function is a
one-dimensional projection of the state space.

Desirable property: the probability to reach the next level should be the
same, whatever the entrance state in the current level.

Ideally, h(x) = P[rg < 7a | X(0) = x], but as in IS, they are a
probabilities we are looking for.

This h(-) can also be learnt or estimated a priori, with a presimulation,
by partitionning the state space and assuming it constant on each
region.
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Issues to be solved (2)

@ How many offsprings at each level?
> In fixed splitting:
* if ¢k < 1/pk, we do not split enough, it will become unlikely to reach
the next event;
* if ¢k > 1/pk, the number of trajectories will exponentially explode with
the number of levels.
* The right amount is cx = 1/pk (ck can be randomized to reach that
value if not an integer).
» In fixed effort, no explosion is possible.
» In both cases, the right amount has to be found.

@ How many levels to define?
> i.e., what probability to reach the next level?
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Optimal values

@ In a general setting, very few results exist:

» We only have a central limit theorem based on genetic type interacting
particle systems, as the sample increases.
» Nothing exist on the definition of optimal number of levels...

@ Consider the simplified setting, with a single entrance state at each
level.

@ Similar to coin—flipping to see if next level is reached or not.

@ In that case, asymptotically optimal results can be derived, providing
hints of values to be used.
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Simplified setting and fixed effort
) N0:N1:---:Nm_1:n
1/m

@ The p,'s binomial r.v. with parameters n and px = p = p;

assumed independent.
@ It can be shown that

Varlpr - pal = HE{ 11— d = (o 2B
_ mp’” ;(1— P . .. +(p(1n—mp))"’.
@ Assuming n > (m—1)(1 — p)/p,
Var[f)l . ﬁm] ~ mp2m—1( )/n ~ m72 l/m/n

The work normalized variance ~ [yfm?]/n = 7(2) 1/m 2

Minimized at m = —In(v0)/2

This gives p™ = vy = e 2™, s0o p = e~ 2.

But the relative error and its work-normalized version both increase
toward infinity at a logarithmic rate.

@ There is no asymptotic optimality either.

e ¢ ¢ ¢
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Simplified setting: fixed splitting

o Ng=n, pr=p= ’yé/m for all k, and ¢ =1/p; i.e., Ny = Ri/p.
@ The process { Nk, k > 1} is a branching process.

@ From standard branching process theory
Var[py - - - pm] = m(1 — p)p*>™ 1 /n.

o If p fixed and m — oo, the squared relative error m(1 — p)/(np) is
unbounded,
@ But it is asymptotically efficient:

o g5 _ . log(m(1 - p)ya/(np) +96) _

-0+ logyo ~o—0+ log Yo

@ Fixed splitting is asymptotically better, but it is more sensitive to the
values used.
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lllustrative simple example: a tandem queue

@ lllustrative of the impact of the importance function.
@ Two queues in tandem
» arrival rate at the first queue is A =1
> mean service time is p; = 1/4, po = 1/2.
» Embedded DTMC: Y = (Y}, j > 0) with Y; = (Y1, Y2,;) number of
customers in each queue after the jth event
» B={(x1,x):x2>L=30}, A={(0,0)}.
@ Goal: impact of the choice of the importance function?
@ Importance functions:

hi(x, %) = x,
ha(x1,%2) = (x2+min(0,x + x3 — L))/2,
h3(x1,x%2) = xa+min(x,L—x2—1) x (1 —x2/L).

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 62 / 72



lllustration, fixed effort: a tandem queue (2)

@ Vj: variance per chain, (N times the variance of the estimator) and the
work-normalized variance per chain, Wy = Sy Vi, where Sy is the expected
total number of simulated steps of the N Markov chains.

@ With hy, Vy and Wy were significantly higher than for h, and hs.
@ Estimators rescaled as Viy = 108 x Vy and Wy = 105 x Wy.

N:210 N:212 N:214 N:216
W Wi | W W | W W | W Wy
h, Splitting 109 120 89 98 | 124 137 | 113 125
hz, Rus. Roul. | 178 67 99 37 | 119 45 | 123 47
hs, Splitting 93 103 | 110 121 93 102 | 107 118
h3, Rus. Roul. 90 34 93 35 94 36 | 109 41

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 63 / 72



Outline

© Confidence interval issues

G. Rubino and B. Tuffin (INRIA)

Monte Carlo & Rare Events



Confidence interval issues

@ Robustness is an issue, but what about the confidence interval
validity?

@ If the rare event has not occured: empirical confidence interval is
(0,0).

@ The problem can even be more underhand: it may happen that the
rare event happens due to some trajectories, but other important
trajectories important for the variance estimation are still rare and not
sampled: the empirical confidence confidence interval is not good
then.
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lllustrative example of the difficulty

@ 4-component system with two classes of components, subject to
failures and repairs. Discrete time Markov Chain
@ 1 probability starting from (2,2) to we reach a down state before
coming back to (2,2).
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IS probability used

@ Failure Biasing scheme: for each up state # (2,2), we increase the
probability of failure to the constant g (ex: 0.8) and use individual
probabilities proportional to the original ones.
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Empirical evaluation as ¢ — 0

@ Fix the number of samples, n = 10*, using the same pseudo-random

number generator, and varying ¢ from 1072 down to 0.

o Remember that u = 262 + o(e?) and 0% = O(€3).

€ 2¢2 Est. Confidence Interval Est. RE
1e-02 | 2e-04 | 2.03e-04 | ( 1.811e-04 , 2.249e-04 ) | 1.08e-01
1e-03 | 2e-06 | 2.37e-06 | ( 1.561e-06 , 3.186e-06 ) | 3.42e-01
2e-04 | 8e-08 | 6.48e-08 | ( 1.579e-08 , 1.138e-07 ) | 7.56e-01
le-04 | 2e-08 | 9.95e-09 | ( 9.801e-09 , 1.010e-08 ) | 1.48e-02
1e-06 | 2e-12 | 9.95e-13 | ( 9.798e-13 , 1.009e-12 ) | 1.48e-02
1e-08 | 2e-16 | 9.95e-17 | ( 9.798e-17 , 1.009e-16 ) | 1.48e-02

@ The estimated value becomes bad as ¢ — 0.

@ |t seems that BRE is verified while it is not!
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Asymptotic explanation
® When e small, transitions in ©(g) not sampled anymore.

@ Asymptotic view of the Markov chain:
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Asymptotic explanation (2)

For this system:
> the expectation is €2 + o(€?)

s
> variance 1an e* + o(eh).

Results in accordance to the numerical values, and BRE is obtained.

°
@ But does not correspond to the initial system, with different values.
@ Reason: important paths are still rare under this IS scheme.

°

Diagnostic procedures can be imagined.
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Some applications

@ HRMS (Highly Reliable Markovian Systems): IS examples
@ STATIC MODELS (Network Reliability):

> a recursive variance reduction technique
» reducing time instead of variance
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